Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.
The measured differential elastic cross section. Data from the tabulation in CERN-PH-EP-2012-239.
Measurements of jet production rates in association with W and Z bosons for jet transverse momenta above 30 GeV are reported, using a sample of proton-proton collision events recorded by CMS at sqrt(s) = 7 TeV, corresponding to an integrated luminosity of 36 inverse picobarns. The study includes the measurement of the normalized inclusive rates of jets sigma(V + >= n jets)/sigma(V), where V represents either a W or a Z. In addition, the ratio of W to Z cross sections and the W charge asymmetry as a function of the number of associated jets are measured. A test of Berends--Giele scaling at sqrt(s) = 7 TeV is also presented. The measurements provide a stringent test of perturbative-QCD calculations and are sensitive to the possible presence of new physics. The results are in agreement with the predictions of a simulation that uses explicit matrix element calculations for final states with jets.
The ratio of the cross section for W+ n jet production over the cross section for W production in the electron channel.
The ratio of the cross section for W+ n jet production over the cross section for W production in the muon channel.
The ratio of the cross section for Z+ n jet production over the cross section for Z production in the electron channel.
Results are presented of a search for any particle(s) decaying to six or more jets in association with missing transverse momentum. The search is performed using 1.34 fb^-1 of sqrt(s)=7 TeV proton-proton collisions recorded by the ATLAS detector during 2011. Data-driven techniques are used to determine the backgrounds in kinematic regions that require at least six, seven or eight jets, well beyond the multiplicities required in previous analyses. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a supersymmetry model (MSUGRA/CMSSM) where they extend previous constraints.
Observed and predicted distributions of the variable ET(C=MISSING)/SQRT(HT) for events with exactly 6 jets each having PT > 55 GeV.
Observed and predicted distributions of the variable ET(C=MISSING)/SQRT(HT) for events with exactly 5 jets each having PT > 80 GeV.
Observed and predicted jet multiplicity distribution for jets with PT > 55 Gev in the ET(C=MISSING)/SQRT(HT) region 1.5-2 GeV.
Measurements of the normalized rapidity (y) and transverse momentum (qT) distributions of Drell-Yan muon and electron pairs in the Z-boson mass region (60
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the absolute value of rapidity of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Normalized differential cross section for Drell-Yan lepton pairs in the Z0 mass region as a function of the transverse momentum of the Z0, for separate muon and lepton channels and the combined measurement. The error shown is the combined statistical and systematic.
Covariance matrix values between the rapidity bins for the muons data sample.
Results of three searches are presented for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons, e or mu. The analysis uses a data sample collected during the first half of 2011 that corresponds to a total integrated luminosity of 1 fb^-1 of sqrt{s} = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. Opposite-sign and same-sign dilepton events are separately studied, with no deviations from the Standard Model expectation observed. Additionally, in opposite- sign events, a search is made for an excess of same-flavour over different-flavour lepton pairs. Effective production cross sections in excess of 9.9 fb for opposite-sign events containing supersymmetric particles with missing transverse momentum greater than 250 GeV are excluded at 95% CL. For same-sign events containing supersymmetric particles with missing transverse momentum greater than 100 GeV, effective production cross sections in excess of 14.8 fb are excluded at 95% CL. The latter limit is interpreted in a simplified weak gaugino production model excluding chargino masses up to 200 GeV.
The dilepton invariant mass distribution for same-sign dileptons.
The missing-mass ET distribution for same-sign dilepton events before any jet requirement.
The missing-mass ET distribution for same-sign dilepton events after requiring two high-pt jets.
A search for pair-produced scalar particles decaying to a four-jet final state is presented. The analysis is performed using an integrated luminosity of 34 pb^-1 recorded by the ATLAS detector in 2010. No deviation from the Standard Model is observed. For a scalar mass of 100 GeV (190 GeV) the limit on the scalar gluon pair production cross section at 95% confidence level is 1 nb (0.28 nb). When these results are interpreted as mass limits, scalar-gluons (hyperpions) with masses of 100 to 185 GeV (100 to 155 GeV) are excluded at 95% confidence level with the exception of a mass window of width about 5 GeV (15 GeV) around 140 GeV.
The distributions of the momentum of the 4th jet.
The di-jet delta(R) distribution for the sgluon candidate with the highest PT jet after applying the PT cut of 55 GeV and pairing the four leading jets into 2 sgluon candidates.
The distribution in relative mass difference of the two sgluon candidates after application of the PT and di-jet delta(R) cuts.
The yield of charged particles associated with high-$p_{\rm T}$ trigger particles ($8 < p_{\rm T} < 15$ GeV/$c$) is measured with the ALICE detector in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta $p_{\rm T}> 3$ GeV/$c$ on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.
The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the central region.
The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the peripheral region.
The ratio of away-side yields in Lead-Lead/Proton-Proton collisions in the central region.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.
Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.
The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.
Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.
We report transverse momentum ($p_{T} \leq15$ GeV/$c$) spectra of $\pi^{\pm}$, $K^{\pm}$, $p$, $\bar{p}$, $K_{S}^{0}$, and $\rho^{0}$ at mid-rapidity in p+p and Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. Perturbative QCD calculations are consistent with $\pi^{\pm}$ spectra in p+p collisions but do not reproduce $K$ and $p(\bar{p})$ spectra. The observed decreasing antiparticle-to-particle ratios with increasing $p_T$ provide experimental evidence for varying quark and gluon jet contributions to high-$p_T$ hadron yields. The relative hadron abundances in Au+Au at $p_{T}{}^{>}_{\sim}8$ GeV/$c$ are measured to be similar to the p+p results, despite the expected Casimir effect for parton energy loss.
The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.
The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $K^0_S$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.
The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\rho^0$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.