The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector at the CERN Large Hadron Collider. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parametrizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions.
Centrality dependence of ${\rm SC}(2,3)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of ${\rm AC}_{2,1}(2,3)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of ${\rm AC}_{1,2}(2,3)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Understanding nuclear structure provides essential insights into the properties of atomic nuclei. In this paper, details of the nuclear structure of $^{\rm 129}$Xe, such as the quadrupole deformation and the nuclear diffuseness, are studied by extensive measurements of anisotropic-flow-related observables in Xe$-$Xe collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.44$ TeV with the ALICE detector at the LHC. The results are compared with those from Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV for a baseline, given that the $^{\rm 208}$Pb nucleus is not deformed. Furthermore, comprehensive comparisons are performed with a state-of-the-art hybrid model using IP-Glasma+MUSIC+UrQMD. It is found that among various IP-Glasma+MUSIC+UrQMD calculations with different values of nuclear parameters, the one using a nuclear diffuseness parameter of $a_0=0.492$ and a nuclear quadrupole deformation parameter of $\beta_2=0.207$ provides a better description of the presented flow measurements. These studies represent an important step towards a thorough exploration of the imaging power of nuclear collisions at ultrarelativistic energy and the search for the imprint of nuclear structure on various flow observables in heavy-ion collisions at the LHC. The findings demonstrate the potential of nuclear structure studies at the TeV energy scale and highlight that the LHC experiments can complement existing low-energy experiments on nuclear structure studies.
Charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.
Charged particle $v_2\{4\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.
Ratio between Xe$-$Xe and Pb$-$Pb charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality.
The correlations between event-by-event fluctuations of symmetry planes are measured in Pb--Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV recorded by the ALICE detector at the Large Hadron Collider. This analysis is conducted using the Gaussian Estimator technique, which is insensitive to biases from correlations between different flow amplitudes. The study presents, for the first time, the centrality dependence of correlations involving up to five different symmetry planes. The correlation strength varies depending on the harmonic order of the symmetry plane and the collision centrality. Comparisons with measurements from lower energies indicate no significant differences within uncertainties. Additionally, the results are compared with hydrodynamic model calculations. Although the model predictions provide a qualitative explanation of the experimental results, they overestimate the data for some observables. This is particularly true for correlators that are sensitive to the non-linear response of the medium to initial-state anisotropies in the collision system. As these new correlators provide unique information -- independent of flow amplitudes -- their usage in future model developments can further constrain the properties of the strongly-interacting matter created in ultrarelativistic heavy-ion collisions.
Centrality dependence of $\langle\cos[6(\Psi_3-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of $\langle\cos[4(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of $\langle\cos[8(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Correlations between event-by-event fluctuations of anisotropic flow harmonics are measured in Pb-Pb collisions at a center-of-mass energy per nucleon pair of 5.02 TeV, as recorded by the ALICE detector at the LHC. This study presents correlations up to the hexagonal flow harmonic, $v_6$, which was measured for the first time. The magnitudes of these higher-order correlations are found to vary as a function of collision centrality and harmonic order. These measurements are compared to viscous hydrodynamic model calculations with EKRT initial conditions and to the iEBE-VISHNU model with TRENTo initial conditions. The observed discrepancies between the data and the model calculations vary depending on the harmonic combinations. Due to the sensitivity of model parameters estimated with Bayesian analyses to these higher-order observables, the results presented in this work provide new and independent constraints on the initial conditions and transport properties in theoretical models used to describe the system created in heavy-ion collisions.
NSC(5,2) vs centrality in Pb-Pb collisions at 5.02 TeV
NSC(5,3) vs centrality in Pb-Pb collisions at 5.02 TeV
NSC(6,2) vs centrality in Pb-Pb collisions at 5.02 TeV
The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.
Inclusive JPSI pair cross section in $2.5 < y < 4.0$.
The first measurements of $\mathrm{K^{*}(892)^{0}}$ resonance production as a function of charged-particle multiplicity in Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.44 TeV and pp collisions at $\sqrt{s}=$ 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity ($|y|< 0.5$) using the hadronic decay channel $\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}$. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of $\mathrm{K^{*0}}$, and yield ratios of resonance to stable hadron ($\mathrm{K^{*0}}$/K) are compared across different collision systems (pp, p$-$Pb, Xe$-$Xe, and Pb$-$Pb) at similar collision energies to investigate how the production of $\mathrm{K^{*0}}$ resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of $\mathrm{K^{*0}}$ in Xe$-$Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model.
$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 0-1\% multiplicity class.
$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 1-5\% multiplicity class.
$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 5-10\% multiplicity class.
Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}} = 5.02$ TeV and the corresponding nuclear modification factor $R_{\rm pPb}^{\rm ch\,jet}$ are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region $|\eta_{\rm jet}| < 0.5$ from charged particles using the anti-$k_{\rm T}$ algorithm with resolution parameters $R = 0.2$, 0.3, and 0.4. The $p_{\rm T}$-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross section ratios, are reported for pp and p-Pb collisions in the transverse momentum range $10 < p^{\rm ch}_{\rm T,jet} < 140$ GeV/$c$ and $10 < p^{\rm ch}_{\rm T,jet} < 160$ GeV/$c$, respectively, together with the nuclear modification factor $R_{\rm pPb}^{\rm ch\,jet}$ in the range $10 < p^{\rm ch}_{\rm T,jet} < 140$ GeV/$c$. The analysis extends the $p_{\rm T}$ range of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD POWHEG calculations with parton shower provided by PYTHIA8 as well as by JETSCAPE simulations.
$p_{\rm T}$-differential cross section of charged-particle jets with $R = 0.2$, $0.3$ and $0.4$ in pp collisions at $\sqrt{s} = 5.02$ TeV.
$p_{\rm T}$-differential cross section of charged-particle jets from model predictions in pp collisions at $\sqrt{s} = 5.02$ TeV.
$p_{\rm T}$-differential cross section of charged-particle jets with $R = 0.2$, $0.3$ and $0.4$ in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Charged-particle jet yields have been measured in semicentral Pb$-$Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. These yields are reported as a function of the jet transverse momentum, and further classified by their angle with respect to the event plane and the event shape, characterized by ellipticity, in an effort to study the path-length dependence of jet quenching. Jets were reconstructed at midrapidity from charged-particle tracks using the anti-$k_{\rm T}$ algorithm with resolution parameters $R =$ 0.2 and 0.4, with event-plane angle and event-shape values determined using information from forward scintillating detectors. The results presented in this letter show that, in semicentral Pb$-$Pb collisions, there is no significant difference between jet yields in predominantly isotropic and elliptical events. However, out-of-plane jets are observed to be more suppressed than in-plane jets. Further, this relative suppression is greater for low transverse momentum ($<$ 50 GeV/$c$) $R =$ 0.2 jets produced in elliptical events, with out-of-plane to in-plane jet-yield ratios varying up to 5.2$\sigma$ between different event-shape classes. These results agree with previous studies indicating that jets experience azimuthally anisotropic suppression when traversing the QGP medium, and can provide additional constraints on the path-length dependence of jet energy loss.
Charged-particle jet yields, R=0.2
Charged-particle jet yields, R=0.4
q2-large/q2-small, R=0.2
Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the CERN Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE Collaboration on charged pion and kaon pairs produced in pp collisions at $\sqrt{s}=13$ TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied.
CF vs qinv
CF vs qinv
CF vs qinv
The elliptic flow ($v_2$) of $\rm D^0$ mesons from beauty-hadron decays (non-prompt $\rm D^0$) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC. The $\rm D^0$ mesons were reconstructed at midrapidity ($|y|<0.8$) from their hadronic decay $\mathrm{D^0 \to K^-\pi^+}$, in the transverse momentum interval $2 < p_{\rm T} < 12$ GeV/$c$. The result indicates a positive $v_2$ for non-prompt $\rm D^0$ mesons with a significance of 2.7$\sigma$. The non-prompt $\rm D^0$-meson $v_2$ is lower than that of prompt non-strange D mesons with 3.2$\sigma$ significance in $2 < p_{\rm T} < 8$ GeV/$c$, and compatible with the $v_2$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.
$p_\mathrm{T}$-differential elliptic flow coefficient $v_2$ of non-prompt $\mathrm{D^0}$ mesons in the 30-50% centrality class in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{TeV}$.