DCS for π − p elastic scattering from 1.2 to 3.0 GeV/ c and phase shift analysis

Aplin, P.S. ; Cowan, I.M. ; Gibson, W.M. ; et al.
Nucl.Phys.B 32 (1971) 253-284, 1971.
Inspire Record 1104030 DOI 10.17182/hepdata.69638

Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.

31 data tables

No description provided.

No description provided.

No description provided.

More…

Some Two-Body Final States of K-p Interactions at 1.33 GeVc

Trower, W.P. ; Ficenec, J.R. ; Hulsizer, R.I. ; et al.
Phys.Rev. 170 (1968) 1207-1222, 1968.
Inspire Record 944939 DOI 10.17182/hepdata.26507

We studied 21 187 two-prong, two-prong-with-kink, and zero-prong-V events at incident kaon momentum of 1.33 GeVc using the 72-in. hydrogen bubble chamber at the Lawrence Radiation Laboratory and two scanning and measuring projectors in Urbana. We determined the total and partial cross sections for all contributing reactions. For the two-body final states, some production and polarization angular distributions were measured. The angular distributions are discussed in terms of exchanges in the kinematical channels s, t, and u assuming the simplest Feynman graphs. Elastic scattering is analyzed as a diffraction process.

1 data table

No description provided.


Measurement of pi-p Elastic Scattering at 180-degrees

Kormanyos, S.W. ; Krisch, A.D. ; O'Fallon, J.R. ; et al.
Phys.Rev. 164 (1967) 1661-1671, 1967.
Inspire Record 944948 DOI 10.17182/hepdata.51371

We have measured the differential cross section for π−p elastic scattering at 180° in steps of 0.10 GeV/c or less in the region P0=1.6 to 5.3 GeV/c. We detected elastic scattering events, from protons in a liquid H2 target, with a double spectrometer consisting of magnets and scintillation counters in coincidence. The incident π− beam was counted by scintillation counters. The cross section was found to have considerable structure. This may be interpreted as interference between the resonant amplitudes and the nonresonant or background amplitude. Very strong destructive interference occurs around P0=2.15 GeV/c, where the cross section drops almost two orders of magnitude in passing through the N*(2190). Another interesting feature of the data is a large narrow peak in the cross section at P0=5.12 GeV/c, providing firm evidence for the existence of a nucleon resonance with a mass of 3245±10 MeV. This N*(3245) has a full width of less than 35 MeV, which is about 1% of its mass. From this experiment we were able to determine the parity and the quantity χ(J+12) for each N* resonance, where χ is the elasticity and J is the spin of the resonance.

45 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Proton Electromagnetic Form Factors at High Momentum Transfers

Chen, K.W. ; Dunning, J.R. ; Cone, A.A. ; et al.
Phys.Rev. 141 (1966) 1267-1285, 1966.
Inspire Record 50783 DOI 10.17182/hepdata.26655

Elastic electron-proton scattering cross sections have been measured using the internal beam of the 6-BeV Cambridge Electron Accelerator at laboratory scattering angles between 31° and 90° for values of the four-momentum transfer squared ranging from q2=0.389 to 6.81 (BeV/c)2 (q2=10 to 175F−2). Incident electron energies ranged from 1.0 to 6.0 BeV. Scattered electrons from an internal liquid-hydrogen target were momentum-analyzed using a single quadrupole spectrometer capable of momentum analysis up to 3.0 BeV/c. Čerenkov and shower counters were used to help reject pion and low-energy background. The cross sections presented are absolute cross sections with experimental errors ranging from 6.8% to 20%. Separation of proton electromagnetic form factors have been made for all but the two highest momentum transfer points, using the Rosenbluth formula. Both form factors, GEp and GMp, were observed to continue to decrease as the momentum transfer increases. An upper limit to the possible asymptotic values of the proton electromagnetic form factors has been established.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Positive Pion Production by Polarized X Rays between 227 and 373 MeV

Smith, R.C. ; Mozley, R.F. ;
Phys.Rev. 130 (1963) 2429-2440, 1963.
Inspire Record 46842 DOI 10.17182/hepdata.26742

Measurements have been made of the ratio of the π+ photoproduction cross sections at right angles to and along the electric field vector. Data have been taken at 45°, 90°, and 135° at energies of 227, 240, 342, and 373 MeV. A comparison of the data with the predictions of a phenomenological analysis using only S and P waves shows less than 0.1% chance of obtaining such results without the inclusion of higher angular momenta, and hence, demonstrates even more convincingly the need for a meson current term which has been indicated by other measurements. A comparison is made with the relativistic dispersion relations of McKinley which include an approximation for the γ, ρ, π coupling. At the resonance energy our polarization asymmetry is insensitive to this coupling and is in good agreement with the McKinley prediction. At lower energy the agreement is not as good but our data seem to substantiate the need for a negative γ, ρ, π coupling constant.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Electron-Proton Elastic Scattering at 1 and 4 BeV

Dunning, J.R. ; Chen, K.W. ; Ramsey, N.F. ; et al.
Phys.Rev.Lett. 10 (1963) 500-504, 1963.
Inspire Record 944928 DOI 10.17182/hepdata.21855

None

7 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization of the Proton from the gamma+n --> p+pi- Reaction

Kenemuth, J.R. ; Stein, P.C. ;
Phys.Rev. 129 (1963) 2259-2264, 1963.
Inspire Record 944978 DOI 10.17182/hepdata.26789

The polarization of the proton from the γ+n→p+π− reaction in deuterium has been experimentally measured at 90° in the center-of-mass system for photon energies near 715 MeV by using a counter technique to observe the left to right asymmetry in the scattering of the protons from carbon. A value of -0.26±0.06 was observed, with the direction of the polarization defined by n^=(k^×q^)|k^×q^|, where k^ and q^ are, respectively, unit vectors in the directions of the photon momentum and the pion momentum. The result is interpreted as an indication that the interference between the P32 (325 MeV) and D32 (750 MeV) resonances may not be the dominant contribution to the polarization at this energy. Significant contributions from either an interference between the P32 (325 MeV) resonance and the possible new resonance suggested by the π, p scattering measurements, or an interference between the D32 (750 MeV) and F52 (1050 MeV) resonances, or a combination of these two possibilities seem to be required.

2 data tables

No description provided.

No description provided.