Date

Measurement of hadron and lepton pair production at 130-GeV less than S**(1/2) less than 189-GeV at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 479 (2000) 101-117, 2000.
Inspire Record 513676 DOI 10.17182/hepdata.48958

We report on measurements of e+e- annihilation into hadrons and lepton pairs. The data have been collected with the L3 detector at LEP at centre-of-mass energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7 pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the measurement of cross sections and leptonic forward-backward asymmetries. The results are in good agreement with Standard Model predictions.

3 data tables match query

Measured cross sections for the electron-pair events. For Bhabha scattering events both the leptons have to be inside 44 to 136 degrees.

Measured cross sections for the electron-pair events. For Bhabha scattering events both the leptons have to be inside 44 to 136 degrees.

Angular distributions for (E+ E-) events for the high energy event sample (ZETA <25 DEGS) Statistical and systematic errors are combined.


Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

1 data table match query

Comparison of Bhabhas with QED.


Measurement of hadron and lepton-pair production at 161-GeV < s**(1/2) < 172-GeV at LEP.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 407 (1997) 361-376, 1997.
Inspire Record 443802 DOI 10.17182/hepdata.47468

We report on measurements of e + e − annihilation into hadrons and lepton pairs. The data have been taken with the L3 detector at LEP at center-of-mass energies between 161 GeV and 172 GeV. In a data sample corresponding to 21.2 pb −1 of integrated luminosity 2728 hadronic and 868 lepton-pair events are selected. The measured cross sections and leptonic forward-backward asymmetries agree well with the Standard Model predictions.

1 data table match query

No description provided.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

5 data tables match query

Cross sections within the polar angle range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error 1.2 pct not included.

Cross sections, after t-channel subtraction, and correction for acceptance to the full solid angle and the full acollinearity angle distribution.. Overall systematic error is 1.2 pct not included.

Cross section within the polar angle range 25 < THETA < 35 degrees plus the symmetric interval 145 < THETA < 160 degrees.. Overall systematic error is 1.4 pct not included.

More…

Limits on Spin 0 Bosons in $e^+ e^-$ Annihilation Up to 45.2-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 140 (1984) 130-136, 1984.
Inspire Record 199851 DOI 10.17182/hepdata.30547

We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.

2 data tables match query

No description provided.

Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.


Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

8 data tables match query

E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

E+ E- cross sections from the 1991 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data). Additional systematic error, excluding luminosity, is 0.37 pct.

E+ E- cross sections from the 1990 data set after t-channel subtraction with only the E- constraint by polar angle 44 to 136 degrees and accollinearity < 10 degrees. Additional systematic error, excluding luminosity, is 1.0 pct at the peak.

More…

DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

1 data table match query

Overall systematic error is 2.6 pct.


Tests of the Standard Model With Lepton Pair Production in $e^+ e^-$ Reactions

The PLUTO collaboration Berger, Christoph ; Deuter, A. ; Genzel, H. ; et al.
Z.Phys.C 27 (1985) 341, 1985.
Inspire Record 207950 DOI 10.17182/hepdata.1917

The differential cross section of the reactione+e−→e+e− at a c.m. energy of 34.7 GeV has been measured. The result, together with our previously measurede+e−→α+α− data, are compared with the standard model predictions. We obtain for the weak neutral current couplings the valuesgv2=0.09×0.06,ga2=0.38×0.08. A fit of the Weinberg mixing angle gives the valuegv2=0.09×0.06,ga2=0.038×0.08. The data are also used to set limits on possible deviations from the pointlike structure of leptons. An upper limit for thee+e− coupling to a heavy spin 0 boson is also given.

1 data table match query

Fully corrected results for Bhabha scattering.


Study of the Leptonic Decays of the $Z^0$ Boson

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 241 (1990) 425-434, 1990.
Inspire Record 295500 DOI 10.17182/hepdata.15431

Measurements are presented of the cross section ratios R ℓ = σ ℓ ( e + e − →ℓ + ℓ − ) σ h ( e + e − →hadrons) for ℓ=e, μ and τ using data taken from a scan around the Z 0 . The results are R e =(5.09± o .32±0.18)%, R μ =(0.46±0.35±0.17)% and R τ =(4.72±0.38±0.29)% where, for the ratio R e , the t -channel contribution has been subtracted. These results are consistent with the hypothesis of lepton universality and test this hypothesis at the energy scale s ∼8300 GeV 2 . The absolute cross sections σ ℓ (e + e − →ℓ + ℓ − ) have also been measured. From the cross sections the leptonic partial widths Γ e =(83.2±3.0±2.4) MeV, (Γ e Γ μ ) 1 2 =(84.6±3.0±2.4) MeV and (Γ e Γ τ ) 1 2 =(82.6±3.3±3.2) MeV have been extracted. Assuming lepton universality the ratio Γ ℓ Γ h =(4.89±0.20±0.12) × 10 −2 w was obtained, together with Γ ℓ =(83.6±1.8±2.2) MeV. The number of light neutrino species is determined to be N v =3.12±0.24±0.25. Al the data are consistent with the predictions of the standard model.

2 data tables match query

E+ E- final state is t-channel subtracted.

No t-channel subtraction. Statistical errors only.


Forward angle pi+- p elastic scattering differential cross-sections at T(pi) = 87-MeV to 139-MeV

Brack, J.T. ; Amaudruz, P.A. ; Ottewell, D.F. ; et al.
Phys.Rev.C 51 (1995) 929-936, 1995.
Inspire Record 400646 DOI 10.17182/hepdata.25894

Absolute π±p elastic scattering differential cross sections have been measured at five incident pion energies between 87 and 139 MeV. An active target of scintillator material (CH1.1) was used to detect recoil protons in coincidence with scattered pions. Pions were detected at forward angles between 27 and 98°c.m. where the low-energy recoil protons stop in the target. The cross sections, typically 5–10% lower than phase shift predictions for π+p and 10–20% lower for the π−p cross sections, are consistent with earlier measurements by this group.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…