Spin asymmetries for the 16O(γ→,pπ−) reaction are reported for incident photon energies of 293 ± 20 MeV, proton angles ranging from 28° to 140° (lab), and pion angles of 35° to 115°. The data are compared with calculations in a quasifree plane-wave impulse approximation model. This model is in good agreement with the data at small momentum transfer q, but does not follow the trend of the data at large q. Sensitivity to the Δ-nucleus potential and to modification of the Δ lifetime from nuclear medium effects are explored using a simple modification of the Δ propagator in the calculations.
The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.
The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.
The data are extracted from the figures by S.Slabospitsky. ASYM is the spin asymmetry. It is the ratio of the difference to the sum of the cross sections with the photon's linear polarization oriented parallel or perpendicular to the scattering plane.
The first spin-transfer experiment performed for the πd→→p→p reaction is described. Three spin-transfer parameters for this π-absorption process were determined, KLSa, KSSa, and KNNa, which correspond to the π-production parameters, KSLp, KSSp, and KNNp, of the time-reversed p→p→d→π process. Each observable was measured at a single angle for a number of energies spanning the Δ resonance of this system. The results are compared with the predictions of published partial wave amplitude fits which are primarily based on existing data for the time-reversed pp→dπ reaction, and also with the predictions of two current theories. The failure of these theories to describe the fundamental features of the data clearly demonstrates the need for further theoretical work in this area.
No description provided.
No description provided.
No description provided.
Inclusive cross sections for Ξ- hyperon production in high-energy Σ-, π- and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary Σ- and π- beams with average momenta of 345 GeV/c and a neutron beam of 260 GeV/c were produced by primary protons of 450 GeV/c from the CERN SPS. The influence of the target mass on the Ξ- cross section is explored by comparing reactions on copper and carbon nuclei. Both single and double differential cross sections are presented as a function of the transverse momentum and the Feynman variable xF. A strong leading effect for Σ- produced by Σ- is observed.
No description provided.
No description provided.
No description provided.
We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.
No description provided.
No description provided.
No description provided.
In 1996 LEP ran at a centre-of-mass energy of 161 GeV, just above the threshold of W-pair production. DELPHI accumulated data corresponding to an integrated luminosity of 9.93 pb −1 , and observed 29 events that are considered as candidates for W-pair production. From these, a cross-section for the doubly resonant e + e − → WW process of 3.67 −0.85 +0.97 ± 0.19 pb has been measured. Within the Standard Model, this cross-section corresponds to a mass of the W-boson of 80.40 ± 0.44 (stat.) ± 0.09 (syst.) ± 0.03 (LEP) GeV/ c 2 . Alternatively, if m W is held fixed at its current value determined by other experiments, the observed cross-section is used to obtain limits on trilinear WWV (V ≡ γ, Z) couplings.
No description provided.
This letter describes a measurement of one of the anomalous triple gauge boson couplings using the first data recorded by the OPAL detector at LEP2. A total of 28 W-pair candidates have been selected for an integrated luminosity of 9.89±0.06 pb −1 recorded at a centre-of-mass energy of 161 GeV. We use these data to place constraints upon the coupling parameter α W φ . We analyse the predicted variation of the total cross-section for all observed channels and the distribution of kinematic variables in the semileptonic decay channels. We measure α W φ to be −0.61 −0.61 0.73 ±0.35, which is consistent with the Standard Model expectation of zero.
ALPHA-W-PHI is the triple gauge boson couplings (TGC). For definition see 'Physics at LEP2', Ed. G. Altarelli, CERN 96-01 (1996), vol. 1.
The total cross section and the forward-backward asymmetry for the process e + e − → μ + μ − ( nγ ) are measured in the energy range 20–136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 pb −1 . Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20–88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of σ 0 and A FB 0 from a model independent fit, enabling constraints to be placed on models with extra Z bosons.
Exlclusive analysis from events with hard ISR.
Inclusive analysis from evvents with no specific selection of hard ISR.
Measurements of helicity density matrix elements have been made for the φ(1020), D*± and B* vector mesons in multihadronic Z0 decays in the OPAL experiment at LEP. Results for inclusive φ produced with high energy show evidence for production preferentially in the helicity zero state, with ρ00 = 0.54 ± 0.08, compared to the value of 1/3 expected for no spin alignment. The corresponding element for the D*± has a value of 0.40 ± 0.02, also suggesting a deviation from 1/3. The B* result, with ρ00 = 0.36 ± 0.09, is consistent with no spin alignment. Off-diagonal elements have been measured for the f and D* mesons; for the D* the element Re ρ1−1 is non-zero, indicating non-independent fragmentation of the primary quarks.
Helicity density matrices elements. Helicity beam frame is used.
Charge conjugated states are understood.
Helicity density matrices elements. Charge conjugated states are understood.
Using the CLEO detector at the Cornell $e~+e~-$ storage ring, CESR, we study the two-photon production of $\Lambda \overline{\Lambda}$, making the first observation of $\gamma \gamma \to \Lambda \overline{\Lambda}$. We present the cross-section for $ \gamma \gamma \to \Lambda \overline{\Lambda}$ as a function of the $\gamma \gamma$ center of mass energy and compare it to that predicted by the quark-diquark model.
No description provided.
No description provided.
No description provided.
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.
No description provided.