Strong evidence is presented for quasi-two-body production of a π + p enhancement with mass 1881±6MeV and width 219±23MeV, recoiling off vector mesons ϱ O and ω from π + p interactions at 7.1 GeV/ c and K * o (890) from K + p interactions at 12 GeV/ c . The most probable J P assignment for this object is 7/2 + , making it a likely candidate for the Regge recurrence of Δ(1236).
JACKSON FRAME.
JACKSON FRAME.
We have studied backward baryon and meson production in π−p→pπ+π−π− at 8.0 GeV/c using a streamer chamber triggered by the detection of a fast forward proton. Our data sample (1227 events) displays prominent N*ρ and N*f quasi-two-body production. These states are investigated with regard to the peripheral nature of the production mechanism and sequential decay of the excited baryon and meson systems. The quasi-two-body production of N*ρ and N*f intermediate states is consistent with u-channel proton exchange as the dominant production mechanism. In the π+π−π− mass distribution we observe a 3- to 4- standard-deviation enhancement at M3π=1897±17 MeV/c2 with full width at half maximum = 110 ± 82 MeV/c2, but find no but find no evidence for backward A1 or A2 production. We observe Δ++(1232) production in the pπ+ effective mass distribution.
THESE VALUES ASSUME ONLY RHO(11) IS NON-ZERO. VALUES FOR OTHER RHO(MM) ARE QUOTED IN PAPER. SIG ERRORS INCLUDE OVER-ALL NORMALIZATION UNCERTAINTY, BUT NO BACKGROUND CORRECTIONS HAVE BEEN MADE.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
In a search for optical rotation near the 8755-Å magnetic-dipole absorption line in atomic Bi, our first results set an upper limit F<10−6 on a parity nonconserving amplitude associated with the line. This limit improves upon earlier parity tests in atoms by three orders of magnitude. Further improvement of at least another order of magnitude appears possible by this method which should then provide an exacting test of parity conservation in the neutral weak-current interaction in atoms.
No description provided.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.
A measurement of backward photoproduction of charged pion pairs on protons is reported. The pion pair mass spectrum shows strong ϱ ° and f production. Data are presented on the u and s dependence for ϱ O and f, together with the decay polarisation for the ϱ O .
No description provided.
No description provided.
AVERAGED OVER U RANGE OF EXPERIMENT. NO EVIDENCE FOR ANY LARGE S-WAVE CONTRIBUTION TO THE PI PI SYSTEM IN THE RHO0 MASS REGION (RHO(0S) < -0.03 +- 0.13). U CHANNEL FRAME: Z AXIS IN INCIDENT PROTON DIRECTION IN THE DIPION REST FRAME.
Measurements have been made of the target asymmetry parameter for photoproduction of π 0 mesons from protons, using a butanol polarised target with a 3 He cryostat. Results were obtained at 14 incident photon energies between 0.7 GeV and 1.45 GeV over an angular range ∼40° to 145° c.m. The recent analysis of Barbour and Crawford provides a very good fit to the data.
No description provided.
No description provided.
No description provided.
The differential cross sections for K+d coherent, breakup, and charge-exchange scattering have been measured at several momenta in the interval 250-600 MeV/c. The data have been fitted using a partial-wave analysis. Assuming an s-wave description of I=1 scattering and using data from the coherent and charge-exchange channels, a description of I=0 K+−N scattering by a combination of s and p waves in a simple single-scattering impulse model has been attempted. The phase shifts obtained are unique up to the Fermi-Yang ambiguity, which can be removed by using existing polarization results at 600 MeV/c.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
We present experimental evidence for a resonant behaviour of the hadron production from e + e − annihilations at the e + e − storage ring ADONE. A Breit-Wigner fit to the enhancement present between 1800 and 1850 MeV gives the following parameters M = 1812 −13 +7 MeV, Γ = 34 −15 +21 MeV.
MULTIHADRON EVENTS (AT LEAST THREE CHARGED TRACKS) PER UNIT LUMINOSITY.
Inclusive single-particle spectra for π± production are presented for data from π±p interactions at 100 GeV/c. The spectra for the four reactions π±p→π±+anything are compared as a function of laboratory longitudinal momentum, Feynman x, center-of-mass (c.m.) rapidity, and transverse momentum squared. Comparisons are also made between these data and analogous data from 16 and 18.5 GeV/c π±p interactions and the energy dependence is discussed. Average values of the transverse momentum are given as a function of the longitudinal momentum and charged-particle multiplicity. A comparison of the charge distributions is presented as a function of rapidity and c.m. energy.
No description provided.
No description provided.
No description provided.
We have studied backward meson and baryon production in π−p→nπ+π− at 8 GeV/c using a streamer chamber triggered by the detection of the interaction of the neutron in thick-plate optical spark chambers. Our data sample of 866 events is dominated by the quasi-two-body final states Δ−(1232)π+, nρ0, and nf0. We study the differential and total backward cross sections for these states and the decay angular distributions of the resonances. The results for the Δ− and ρ0 indicate that both nucleon and Δ exchange in the u channel are important in their production, while f0 production is, as expected, consistent with nucleon exchange.
No description provided.
BACKWARD DIP.
No description provided.