Showing 10 of 1718 results
A search is presented for the resonant production of a pair of standard model-like Higgs bosons using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where at least one of the pairs is highly Lorentz-boosted and is reconstructed as a single large-area jet. The other pair may be either similarly merged or resolved, the latter reconstructed using two b-tagged jets. The data are found to be consistent with standard model processes and are interpreted as 95% confidence level upper limits on the product of the cross sections and the branching fractions of the spin-0 radion and the spin-2 bulk graviton that arise in warped extradimensional models. The limits set are in the range 9.74-0.29 fb and 4.94-0.19 fb for a narrow radion and a graviton, respectively, with masses between 1 and 3 TeV. For a radion and for a bulk graviton with widths 10% of their masses, the limits are in the range 12.5-0.35 fb and 8.23-0.23 fb, respectively, for the same masses. These limits result in the exclusion of a narrow-width graviton with a mass below 1.2 TeV, and of narrow and 10%-width radions with masses below 2.6, and 2.9 TeV, respectively.
Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the TT pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the TT pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the TT pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the TT pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the TT pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the TT pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved pass region, projected onto the plane of corrected HH mass (mHH) mHH, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $\sigma$(pp->X)B(X->HH->4b) for the narrow spin-0 radion model. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections are also shown.
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $\sigma$(pp->X)B(X->HH->4b) for the narrow width spin-2 bulk graviton model. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections are also shown.
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $\sigma$(pp->X)B(X->HH->4b) for the 10%-width spin-0 radion model. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections are also shown.
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $\sigma$(pp->X)B(X->HH->4b) for the 10%-width spin-2 bulk graviton model. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections are also shown.
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the PHENIX experiment in 2014 for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$ collisions, $I_{AA}$ and $\Delta_{AA}$, as a function of the trigger-hadron azimuthal separation, $\Delta\phi$, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects.
Per-trigger jet-pair yield as a function of $\Delta\phi$ for selected $\pi^0$ trigger and charged-hadron-associated $p_T$ combinations (${{p_{T,\pi^0}} \otimes p_{T,h}}$) in Au$+$Au collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Integrated away-side $I_{AA}$ as a function of $p_T^h$. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 20%-40% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side $\Delta_{AA}$ for ${\pi/2<\Delta\phi<\pi}$
Differential away-side $\Delta_{AA}$ for ${\pi/2<\Delta\phi<\pi}$
Differential away-side $\Delta_{AA}$ for ${\pi/2<\Delta\phi<\pi}$
Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of $1.5\times10^{-46}$~cm$^2$ at a 90% confidence level for a WIMP mass of 33~GeV/c$^2$ for this interaction.
WIMP-Pion interaction cross section at the 90% CL
A search for Higgs boson pair (HH) production in association with a vector boson V (W or Z boson) is presented. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Both hadronic and leptonic decays of V bosons are used. The leptons considered are electrons, muons, and neutrinos. The HH production is searched for in the $\mathrm{b\bar{b}b\bar{b}}$ decay channel. An observed (expected) upper limit at 95% confidence level of VHH production cross section is set at 294 (124) times the standard model prediction. Constraints are also set on the modifiers of the Higgs boson trilinear self-coupling, $\kappa_{\lambda}$, assuming $\kappa_{2\mathrm{V}}$ = 1 and vice versa on the coupling of two Higgs bosons with two vector bosons, $\kappa_{2\mathrm{V}}$. The observed (expected) 95% confidence intervals of these coupling modifiers are -37.7 $\lt$ $\kappa_{\lambda}$ $\lt$ 37.2 (-30.1 $\lt$ $\kappa_{\lambda}$ $\lt$ 28.9) and -12.2 $\lt$ $\kappa_{2\mathrm{V}}$ $\lt$ 13.5 (-7.2 $\lt$ $\kappa_{2\mathrm{V}}$ $\lt$ 8.9), respectively.
The VHH cross section limits per channel and combined for SM value couplings.
The VHH cross section limits per channel and combined for $\kappa_{\lambda}$ = 5.5.
Upper 95% CL limits on VHH signal cross section scanned over the $\kappa_{\lambda}$ parameter while fixing the $\kappa_{2V}$ and $\kappa_{V}$ to their SM-predicted values.
Upper 95% CL limits on HH signal cross section scanned over the $\kappa_{\lambda}$ parameter while fixing the $\kappa_{2V}$ and $\kappa_{V}$ to their SM-predicted values.
Upper 95% CL limits on VHH signal cross section scanned over the $\kappa_{2V}$ parameter while fixing the $\kappa_{\lambda}$ and $\kappa_{V}$ to their SM-predicted values.
Upper 95% CL limits on HH signal cross section scanned over the $\kappa_{2V}$ parameter while fixing the $\kappa_{\lambda}$ and $\kappa_{V}$ to their SM-predicted values.
Upper 95% CL limits on VHH signal cross section scanned over the $\kappa_{V}$ parameter while fixing the $\kappa_{2V}$ and $\kappa_{\lambda}$ to their SM-predicted values.
Upper 95% CL limits on HH signal cross section scanned over the $\kappa_{V}$ parameter while fixing the $\kappa_{2V}$ and $\kappa_{\lambda}$ to their SM-predicted values.
A search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars $\mathrm{a}_1$ is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or $\tau$ leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to $\mu\mu$bb and to $\tau\tau$bb, via a pair of $\mathrm{a}_1$s. The limits depend on the pseudoscalar mass $m_{\mathrm{a}_1}$ and are observed to be in the range (0.17-3.3) $\times$ 10$^{-4}$ and (1.7-7.7) $\times$ 10$^{-2}$ in the $\mu\mu$bb and $\tau\tau$bb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$ $\to$ $\ell\ell$bb) at 95% CL, with $\ell$ being a muon or a $\tau$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, $\mathcal{B}($H $\to$ $\mathrm{a}_1\mathrm{a}_1$) values above 0.23 are excluded at 95% CL for $m_{\mathrm{a}_1}$ values between 15 and 60 GeV.
Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \mu\mu$bb) as functions of $m_{\text{a}_{1}}$. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.
Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow \tau\tau$bb) in percent as functions of $m_{\text{a}_{1}}$, for the combination of the $\mu\tau_{\text{h}}$, $e\tau_{\text{h}}$, and $e\mu$ channels. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.
Observed and expected upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1} \rightarrow ll$bb) in percent, where $l$ stands for muons or $\tau$ leptons, obtained from the combination of the $\mu\mu$bb and $\tau\tau$bb channels. The results are obtained as functions $m_{\text{a}_{1}}$ for 2HDM+S models, independent of the type and tan $\beta$ parameter. The inner and outer bands indicate the regions containing the distribution of limits located within 68 and 95% confidence intervals, respectively, of the expectation under the background-only hypothesis.
Observed upper limits at 95% CL on B($\text{H} \rightarrow \text{a}_{1}\text{a}_{1}$) in percent, obtained from the combination of the $\mu\mu$bb and $\tau\tau$bb channels. The results are obtained as functions of $m_{\text{a}_{1}}$ for 2HDM+S Type I (independent of tan$\beta$), Type II (tan$\beta$=2.0), Type III (tan$\beta$=2.0), and Type IV (tan$\beta$=0.6), respectively.
A search for beyond the standard model spin-0 bosons, $\phi$, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with a W or Z gauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-like $\phi$ model, limits are set on the mixing angle of the Higgs boson with the $\phi$ boson. For the associated production of a $\phi$ boson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.
Cross sections for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signal models as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t\bar{t} \phi$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (ee)$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\mu\mu)$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\tau\tau)$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (ee)$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\mu\mu)$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\tau\tau)$ PS with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (ee)$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\mu\mu)$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t\bar{t} \phi (\tau\tau)$ H-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (ee)$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\mu\mu)$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR4 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR4 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\tau\tau)$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR5 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR5 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (ee)$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR6 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR6 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\mu\mu)$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR7 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR7 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\tau\tau)$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (ee)$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\mu\mu)$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi (\tau\tau)$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (ee)$ Scalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\mu\mu)$ Scalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\tau\tau)$ Scalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (ee)$ Pseudoscalar with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\mu\mu)$ Pseudoscalar with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\tau\tau)$ Pseudoscalar with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (ee)$ Higgs-like with $\phi$ decaying into dielectron pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\mu\mu)$ Higgs-like with $\phi$ decaying into dimuon pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Observed and expected upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi (\tau\tau)$ Higgs-like with $\phi$ decaying into ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t \bar{t} \phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $t \bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the signal production cross section and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding Limit on $\sigma B(ee)$, $\sigma B(\mu\mu)$ and $\sigma B(\tau\tau)$ plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t \bar{t} \phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t \bar{t} \phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $t \bar{t} \phi$ H-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on $g^2_{tS}$ for the dilaton-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the dilaton-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on $g^2_{tS}$ for the dilaton-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the dilaton-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on $g^2_{tPS}$ for the axion-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the axion-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on $g^2_{tPS}$ for the axion-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the axion-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $W\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow$ ee. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow$ ee. The vertical gray band indicates the mass region not considered in the analysis.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi$ Scalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow \mu\mu$. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow \mu\mu$. The vertical gray band indicates the mass region not considered in the analysis.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi$ Pseudoscalar with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
The 95% confidence level upper limits on $sin^2 \theta$ for the H-like production and decay of X$\phi$ signal model.
The 95% confidence level upper limits on $sin^2 \theta$ for the H-like production and decay of X$\phi$ signal model.
Overlay of observed upper limits at 95% CL on the product of the coupling parameter and branching fraction of the $Z\phi$ Higgs-like with $\phi$ decaying into dielectron, dimuon or ditau pair. Theory cross section for all signals is provived in separate figure Cross section ($pp \rightarrow \ X\phi) [pb]$ and tabulated observed and expected upper limits for each signal model on corresponding to one flavor limit plots.
Cross section in units of pb for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signals as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
Cross section in units of pb for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signals as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
Product of acceptance and efficiency for $t\bar{t} \phi (ee)$ Scalar signal model in each signal region of the dielectron channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\mu\mu)$ Scalar signal model in each signal region of the dimuon channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\tau\tau)$ Scalar signal model in each signal region of the ditau channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $t\bar{t} \phi (ee)$ Pseudoscalar signal model in each signal region of the dielectron channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\mu\mu)$ Pseudoscalar signal model in each signal region of the dimuon channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $t\bar{t} \phi (\tau\tau)$ PS signal model in each signal region of the ditau channel with inclusive t\bar{t} decay.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $W\phi (ee)$ Scalar signal model in each signal region of the dielectron channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\mu\mu)$ Scalar signal model in each signal region of the dimuon channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\tau\tau)$ Scalar signal model in each signal region of the ditau channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $W\phi (ee)$ Pseudoscalar signal model in each signal region of the dielectron channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\mu\mu)$ Pseudoscalar signal model in each signal region of the dimuon channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\tau\tau)$ Pseudoscalar signal model in each signal region of the ditau channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $W\phi (ee)$ Higgs-like signal model in each signal region of the dielectron channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\mu\mu)$ Higgs-like signal model in each signal region of the dimuon channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $W\phi (\tau\tau)$ Higgs-like signal model in each signal region of the ditau channel with leptonic W decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $Z\phi (ee)$ Scalar signal model in each signal region of the dielectron channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\mu\mu)$ Scalar signal model in each signal region of the dimuon channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\tau\tau)$ Scalar signal model in each signal region of the ditau channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $Z\phi (ee)$ Pseudoscalar signal model in each signal region of the dielectron channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\mu\mu)$ Pseudoscalar signal model in each signal region of the dimuon channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\tau\tau)$ Pseudoscalar signal model in each signal region of the ditau channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Product of acceptance and efficiency for $Z\phi (ee)$ Higgs-like signal model in each signal region of the dielectron channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\mu\mu)$ Higgs-like signal model in each signal region of the dimuon channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Product of acceptance and efficiency for $Z\phi (\tau\tau)$ Higgs-like signal model in each signal region of the ditau channel with leptonic Z decay.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
Example of the signal shape paramertization for W$\phi$ signal, $\phi\rightarrow ee $. Only for illustration purpose. All signals parametrization for all coupling scenarios are provided in SignalParametrizationele.root file and README file with instructions under Additional resources.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
Example of the signal shape paramertization for W$\phi$ signal, $\phi\rightarrow $\mu\mu$ $. Only for illustration purpose. All signals parametrization for all coupling scenarios are provided in SignalParametrizationmu.root file and README file with instructions under Additional resources.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
Example of the signal shape paramertization for W$\phi$ signal, $\phi\rightarrow $\tau\tau$ $. Only for illustration purpose. All signals parametrization for all coupling scenarios are provided in SignalParametrizationtau.root file and README file with instructions under Additional resources.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of the mixing angle $sin^2 \theta$ and branching fraction for combined X$\phi$ signal model. Limits for Higgs-like production of $\phi$ boson in the dielectron channel. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The vertical gray band indicates the mass region corresponding to the Z boson mass window veto. Branching fractions B($\phi \rightarrow $ ee) is arbitrary.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on the product of the mixing angle $sin^2 \theta$ and branching fraction for combined X$\phi$ signal model. Limits for Higgs-like production of $\phi$ boson in the dimuon channel. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The vertical gray band indicates the mass region corresponding to the Z boson mass window veto. Branching fractions B($\phi \rightarrow \mu\mu$) is arbitrary.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on $sin^2 \theta$ where $\theta$ is mixing angle, for combined dimuon and ditau channels of X$\phi$ signal model. The inner(green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on the square of the Yukawa coupling to top quarks $g^2_{S}$ for combined dimuon and ditau channels of $t\bar{t} \phi$ signal model with dilaton-like $\phi$ boson. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level expected and observed upper limits on the square of the Yukawa coupling to top quarks $g^2_{PS}$ for combined dimuon and ditau channels of $t\bar{t} \phi$ signal model with ”fermi-philic” axion-like $\phi$ boson. The inner (green) and the outer (yellow) bands indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra Min. $M_{ee}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\mu\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{e\mu}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Mass spectra Min. $M_{l\tau}$ or $M_{\tau\tau}$ (GeV) for the full Run 2 data set. In the attached figure the lower panel shows the ratio of observed events to the total expected SM background prediction, and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses are indicated in the legend. For reinterpretation we provide signal parameterization and instructions to extract it in Additional resources.
Selected signal shapes of the $W\phi$(ee) signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$(ee) signal are provided in the SignalShapes_XPhiToEleEle.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$(ee) signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$(ee) signal are provided in the SignalShapes_XPhiToEleEle.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\mu\mu)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\mu\mu)$ signal are provided in the SignalShapes_XPhiToMuMu.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\mu\mu)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\mu\mu)$ signal are provided in the SignalShapes_XPhiToMuMu.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\tau\tau)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\tau\tau)$ signal are provided in the SignalShapes_XPhiToTauTau.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\tau\tau)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\tau\tau)$ signal are provided in the SignalShapes_XPhiToTauTau.root file, and a README file with instructions is provided under Additional Resources.
A search is presented for fractionally charged particles with charge below 1$e$, using their small energy loss in the tracking detector as a key variable to observe a signal. The analyzed data set corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions collected at $\sqrt{s}$ = 13 TeV in 2016-2018 at the CERN LHC. This is the first search at the LHC for new particles with charges between $e/$3 and 0.9$e$, including an extension of previous results at a charge of 2$e/$3. Masses up to 640 GeV and charges as low as $e/$3 are excluded at 95% confidence level. These are the most stringent limits to date for the considered Drell-Yan-like production mode.
Signal yields for two charge scenarios considered in the analysis, as well as their associated uncertainties.
Signal yields for the charge scenarios considered in the analysis, as well as their associateds uncertainties.
Signal yields for two charge scenarios considered in the analysis, as well as their associated uncertainties.
Signal yields for the charge scenarios considered in the analysis, as well as their associateds uncertainties.
Signal yields for two charge scenarios considered in the analysis, as well as their associated uncertainties.
Signal yields for the charge scenarios considered in the analysis, as well as their associateds uncertainties.
Signal yields for two charge scenarios considered in the analysis, as well as their associated uncertainties.
Signal yields for the charge scenarios considered in the analysis, as well as their associateds uncertainties.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the early 2016 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 6%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text. Comparing with respect to the binomial fit starting at $N_{\text{hits}}^{\text{low dE/dx}} = 2$, and not $N_{\text{hits}}^{\text{low dE/dx}} = 1$, is needed to account for the fact that early 2016 data is more strongly affected low dE/dx by instrumental effects that widen the N hits distribution.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the early 2016 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 6%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text. Comparing with respect to the binomial fit starting at $N_{\text{hits}}^{\text{low dE/dx}} = 2$, and not $N_{\text{hits}}^{\text{low dE/dx}} = 1$, is needed to account for the fact that early 2016 data is more strongly affected low dE/dx by instrumental effects that widen the N hits distribution.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the late 2016 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 78%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the late 2016 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 78%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the 2017 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 65%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the 2017 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 65%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the 2018 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 9%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text.
Distribution of $N_{\text{hits}}^{\text{low dE/dx}}$ in the SR and the CR for the 2018 data set, as well as for an FCP signal at a mass of 100 GeV and different charge scenarios. The vertical bars and the shaded area correspond to the statistical uncertainty in the SR and the CR, respectively. The p-value of the fit is 9%. The two lower panels show the ratio of the number of tracks observed in the CR (upper) and SR (lower), and the fit function. The vertical bars correspond to the uncertainty from statistical sources, while the shaded area shows the systematic uncertainty in the fit due to the choice of the fitting function and the binomial fit range as explained in low dE/dx the main text.
Exclusion region (hatched) at 95% CL in the FCP charge-mass plane for the considered signal. The expected exclusion is shown with the associated 1 and 2 standard deviations $\sigma$ bands. Signal points at charges 0.9, 0.8, 2/3, 0.5, and 1/3 e are connected by straight lines to guide the eye. This is a conservative interpolation. Previous exclusions from CMS [Phys. Rev. D 87 (2013) 092008), JHEP 07 (2013) 122] as well as OPAL [Phys. Lett. B 572 (2003) 8] are given for comparison.
Exclusion region (hatched) at 95% CL in the FCP charge-mass plane for the considered signal. The expected exclusion is shown with the associated 1 and 2 standard deviations $\sigma$ bands. Signal points at charges 0.9, 0.8, 2/3, 0.5, and 1/3 e are connected by straight lines to guide the eye. This is a conservative interpolation. Previous exclusions from CMS [Phys. Rev. D 87 (2013) 092008), JHEP 07 (2013) 122] as well as OPAL [Phys. Lett. B 572 (2003) 8] are given for comparison.
Differential cross sections for top quark pair ($\mathrm{t\bar{t}}$) production are measured in proton-proton collisions at a center-of-mass energy of 13 TeV using a sample of events containing two oppositely charged leptons. The data were recorded with the CMS detector at the CERN Large Hadron Collider and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential cross sections are measured as functions of kinematic observables of the $\mathrm{t\bar{t}}$ system, the top quark and antiquark and their decay products, as well as of the number of additional jets in the event. The results are presented as functions of up to three variables and are corrected to the parton and particle levels. When compared to standard model predictions based on quantum chromodynamics at different levels of accuracy, it is found that the calculations do not always describe the observed data. The deviations are found to be largest for the multi-differential cross sections.
Absolute differential ttbar production cross section measured as function of top pT at the parton level in the full phase space.
Absolute differential ttbar production cross section measured as function of top rapidity at the parton level in the full phase space.
Absolute differential ttbar production cross section measured as function of ttbar mass at the parton level in the full phase space.
Absolute differential ttbar production cross section measured as function of ttbar rapidity in bins of ttbar mass at the parton level in the full phase space.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.
Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.
The inclusive jet cross section is measured as a function of jet transverse momentum $p_\mathrm{T}$ and rapidity $y$. The measurement is performed using proton-proton collision data at $\sqrt{s}$ = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb$^{-1}$. The jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm using a distance parameter of $R$ = 0.4, within the rapidity interval $\lvert y\rvert$$\lt$ 2, and across the kinematic range 0.06 $\lt$$p_\mathrm{T}$$\lt$ 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization / factorization scales and the strong coupling $\alpha_\mathrm{S}$.
The JEC, JER, and total systematic uncertainties in unfolded cross sections as functions of transverse momentum, for |y|<0.5. The total systematic uncertainty includes also the luminosity, jet identification and trigger efficiency uncertainties.
The JEC, JER, and total systematic uncertainties in unfolded cross sections as functions of transverse momentum, for 0.5<|y|<1. The total systematic uncertainty includes also the luminosity, jet identification and trigger efficiency uncertainties.
The JEC, JER, and total systematic uncertainties in unfolded cross sections as functions of transverse momentum, for 1<|y|<1.5. The total systematic uncertainty includes also the luminosity, jet identification and trigger efficiency uncertainties.
The JEC, JER, and total systematic uncertainties in unfolded cross sections as functions of transverse momentum, for 1.5<|y|<2. The total systematic uncertainty includes also the luminosity, jet identification and trigger efficiency uncertainties.
The unfolded measured particle-level inclusive jet cross section as functions of jet pT (markers), for |y|<0.5, compared to the NLO perturbative QCD prediction (histogram), using the CT14NLO PDF set, with muR = muF = HT, and corrected for the NP effects. The experimental and theoretical systematic uncertainties are shown.
The unfolded measured particle-level inclusive jet cross section as functions of jet pT (markers), for 0.5<|y|<1, compared to the NLO perturbative QCD prediction (histogram), using the CT14NLO PDF set, with muR = muF = HT, and corrected for the NP effects. The experimental and theoretical systematic uncertainties are shown.
The unfolded measured particle-level inclusive jet cross section as functions of jet pT (markers), for 1<|y|<1.5, compared to the NLO perturbative QCD prediction (histogram), using the CT14NLO PDF set, with muR = muF = HT, and corrected for the NP effects. The experimental and theoretical systematic uncertainties are shown.
The unfolded measured particle-level inclusive jet cross section as functions of jet pT (markers), for 1.5<|y|<2, compared to the NLO perturbative QCD prediction (histogram), using the CT14NLO PDF set, with muR = muF = HT, and corrected for the NP effects. The experimental and theoretical systematic uncertainties are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = pT, for |y|<0.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = pT, for 0.5<|y|<1. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = pT, for 1<|y|<1.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = pT, for 1.5<|y|<2. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = HT, for |y|<0.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = HT, for 0.5<|y|<1. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = HT, for 1<|y|<1.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NLO theoretical predictions, using the CT14NLO PDF set, with mu = HT, for 1.5<|y|<2. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the CT14NNLO PDF set, with mu = HT, for |y|<0.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the CT14NNLO PDF set, with mu = HT, for 0.5<|y|<1. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the CT14NNLO PDF set, with mu = HT, for 1<|y|<1.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the CT14NNLO PDF set, with mu = HT, for 1.5<|y|<2. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the NNPDF31NNLO PDF set, with mu = HT, for |y|<0.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the NNPDF31NNLO PDF set, with mu = HT, for 0.5<|y|<1. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the NNPDF31NNLO PDF set, with mu = HT, for 1<|y|<1.5. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
Ratios (points) of the unfolded measured cross sections to the NNLO theoretical predictions, using the NNPDF31NNLO PDF set, with mu = HT, for 1.5<|y|<2. The vertical error bars show the statistical experimental uncertainty. The systematic experimental uncertainty, the total theoretical uncertainty, and the individual sources of theoretical uncertainty are shown.
The effect of aS(MZ) variation, for |y|<0.5. The NNLO theoretical cross section predictions using the NNPDF31NNLO PDF with m = HT, calculated for different choices of aS (0.108, 0.110, 0.112, 0.114, 0.116, 0.117, 0.118, 0.119, 0.120, 0.122, and 0.124), are divided by the benchmark NNLO prediction for aS = 0.118 and the same choice of PDF set, muR, and muF. Also shown is the experimental unfolded measurement divided by the same benchmark prediction. The width of the unity line corresponds to the statistical uncertainty from the MC integration for the determination of the NNLO prediction. The error bars on the unfolded data correspond to the total experimental statistical and systematic uncertainty added in quadrature.
The effect of aS(MZ) variation, for 0.5<|y|<1. The NNLO theoretical cross section predictions using the NNPDF31NNLO PDF with m = HT, calculated for different choices of aS (0.108, 0.110, 0.112, 0.114, 0.116, 0.117, 0.118, 0.119, 0.120, 0.122, and 0.124), are divided by the benchmark NNLO prediction for aS = 0.118 and the same choice of PDF set, muR, and muF. Also shown is the experimental unfolded measurement divided by the same benchmark prediction. The width of the unity line corresponds to the statistical uncertainty from the MC integration for the determination of the NNLO prediction. The error bars on the unfolded data correspond to the total experimental statistical and systematic uncertainty added in quadrature.
The effect of aS(MZ) variation, for 1<|y|<1.5. The NNLO theoretical cross section predictions using the NNPDF31NNLO PDF with m = HT, calculated for different choices of aS (0.108, 0.110, 0.112, 0.114, 0.116, 0.117, 0.118, 0.119, 0.120, 0.122, and 0.124), are divided by the benchmark NNLO prediction for aS = 0.118 and the same choice of PDF set, muR, and muF. Also shown is the experimental unfolded measurement divided by the same benchmark prediction. The width of the unity line corresponds to the statistical uncertainty from the MC integration for the determination of the NNLO prediction. The error bars on the unfolded data correspond to the total experimental statistical and systematic uncertainty added in quadrature.
The effect of aS(MZ) variation, for 1.5<|y|<2. The NNLO theoretical cross section predictions using the NNPDF31NNLO PDF with m = HT, calculated for different choices of aS (0.108, 0.110, 0.112, 0.114, 0.116, 0.117, 0.118, 0.119, 0.120, 0.122, and 0.124), are divided by the benchmark NNLO prediction for aS = 0.118 and the same choice of PDF set, muR, and muF. Also shown is the experimental unfolded measurement divided by the same benchmark prediction. The width of the unity line corresponds to the statistical uncertainty from the MC integration for the determination of the NNLO prediction. The error bars on the unfolded data correspond to the total experimental statistical and systematic uncertainty added in quadrature.
Unfolded correlation matrix for |y|<0.5.
Unfolded correlation matrix for 0.5<|y|<1.
Unfolded correlation matrix for 1<|y|<1.5.
Unfolded correlation matrix for 1.5<|y|<2.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.