Results of a search for new physics in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ at a center-of-mass energy of 13 TeV collected in the period 2015-2018 with the ATLAS detector at the Large Hadron Collider. Compared to previous publications, in addition to an increase of almost a factor of four in the data size, the analysis implements a number of improvements in the signal selection and the background determination leading to enhanced sensitivity. Events are required to have at least one jet with transverse momentum above 150 GeV and no reconstructed leptons ($e$, $\mu$ or $\tau$) or photons. Several signal regions are considered with increasing requirements on the missing transverse momentum starting at 200 GeV. Overall agreement is observed between the number of events in data and the Standard Model predictions. Model-independent $95%$ confidence-level limits on visible cross sections for new processes are obtained in the range between 736 fb and 0.3 fb. Results are also translated into improved exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, supersymmetric particles in several compressed scenarios, axion-like particles, and new scalar particles in dark-energy-inspired models. In addition, the data are translated into bounds on the invisible branching ratio of the Higgs boson.
This is the HEPData space for the ATLAS monojet full Run 2 analysis. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-06/ The full statistical likelihood is provided for this analysis. It can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <br/><br/> <b>Post-fit $p_{\mathrm{T}}^{\mathrm{recoil}}$ distribution:</b> <ul> <li><a href="102093?version=3&table=HistogramCR1mu0b">CR1mu0b</a> <li><a href="102093?version=3&table=HistogramCR1e0b">CR1e0b</a> <li><a href="102093?version=3&table=HistogramCR1L1b">CR1L1b</a> <li><a href="102093?version=3&table=HistogramCR2mu">CR2mu</a> <li><a href="102093?version=3&table=HistogramCR2e">CR2e</a> <li><a href="102093?version=3&table=HistogramSR">SR</a> </ul> <b>Exclusion contours:</b> <ul> <li>Dark Matter axial-vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMA">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMA">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMA">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMA">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMA">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMA">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMA">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMA">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMA">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter pseudo-scalar mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMP">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMP">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMP">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMP">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMP">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMP">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMP">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMP">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMP">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMV">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMV">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMV">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMV">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMV">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMV">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMV">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMV">-2 $\sigma$ expected</a> </ul> <li>Dark Matter spin-dependent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSDneutron">observed</a> <li>Dark Matter spin-independent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSInucleon">observed</a> <li>Dark Matter WIMP annihilation rate: <a href="102093?version=3&table=ContourID">observed</a> <li>SUSY stop pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsTT_directCC">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_directCC">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_directCC">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_directCC">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_directCC">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_directCC">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_directCC">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_directCC">-2 $\sigma$ expected</a> </ul> <li>SUSY stop pair production (4-body decay): <ul> <li><a href="102093?version=3&table=Contourg_obsTT_bffN">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_bffN">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_bffN">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_bffN">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_bffN">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_bffN">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_bffN">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_bffN">-2 $\sigma$ expected</a> </ul> <li>SUSY sbottom pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsBB">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1BB">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1BB">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expBB">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1BB">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1BB">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2BB">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2BB">-2 $\sigma$ expected</a> </ul> <li>SUSY squark pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsSS">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1SS">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1SS">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expSS">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1SS">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1SS">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2SS">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2SS">-2 $\sigma$ expected</a> </ul> <li>Dark energy: <a href="102093?version=3&table=ContourDE">observed and expected</a> <li>ADD: <a href="102093?version=3&table=ContourADD">observed and expected</a> <li>Axion-like particles: <a href="102093?version=3&table=ContourALPs">observed and expected</a> </ul> <b>Impact of systematic uncertainties:</b> <a href="102093?version=3&table=Tablesystimpacts">Table</a><br/><br/> <b>Yields of exclusive regions:</b> <a href="102093?version=3&table=TableyieldsEM0">EM0</a> <a href="102093?version=3&table=TableyieldsEM1">EM1</a> <a href="102093?version=3&table=TableyieldsEM2">EM2</a> <a href="102093?version=3&table=TableyieldsEM3">EM3</a> <a href="102093?version=3&table=TableyieldsEM4">EM4</a> <a href="102093?version=3&table=TableyieldsEM5">EM5</a> <a href="102093?version=3&table=TableyieldsEM6">EM6</a> <a href="102093?version=3&table=TableyieldsEM7">EM7</a> <a href="102093?version=3&table=TableyieldsEM8">EM8</a> <a href="102093?version=3&table=TableyieldsEM9">EM9</a> <a href="102093?version=3&table=TableyieldsEM10">EM10</a> <a href="102093?version=3&table=TableyieldsEM11">EM11</a> <a href="102093?version=3&table=TableyieldsEM12">EM12</a><br/><br/> <b>Yields of inclusive regions:</b> <a href="102093?version=3&table=TableyieldsIM0">IM0</a> <a href="102093?version=3&table=TableyieldsIM1">IM1</a> <a href="102093?version=3&table=TableyieldsIM2">IM2</a> <a href="102093?version=3&table=TableyieldsIM3">IM3</a> <a href="102093?version=3&table=TableyieldsIM4">IM4</a> <a href="102093?version=3&table=TableyieldsIM5">IM5</a> <a href="102093?version=3&table=TableyieldsIM6">IM6</a> <a href="102093?version=3&table=TableyieldsIM7">IM7</a> <a href="102093?version=3&table=TableyieldsIM8">IM8</a> <a href="102093?version=3&table=TableyieldsIM9">IM9</a> <a href="102093?version=3&table=TableyieldsIM10">IM10</a> <a href="102093?version=3&table=TableyieldsIM11">IM11</a> <a href="102093?version=3&table=TableyieldsIM12">IM12</a><br/><br/> <b>Cutflows:</b><br/><br/> Signals filtered with a truth $E_\mathrm{T}^\mathrm{miss}$ cut at: <a href="102093?version=3&table=Tablecutflows150GeV">150 GeV</a> <a href="102093?version=3&table=Tablecutflows350GeV">350 GeV</a><br/><br/>
The inclusive cross section of top quark-antiquark pairs produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is measured in the lepton$+$jets and dilepton decay channels. The data sample corresponds to 9.7 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of $\sigma_{t\bar{t}} = 7.26 \pm 0.13\,(\mathrm{stat.})\,^{+0.57}_{-0.50}\,(\mathrm{syst.})$ pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is $m_t = 172.8 \pm 1.1\,(\mathrm{theo.})\,^{+3.3}_{-3.1}\,(\mathrm{exp.})$ GeV.
The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.
A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.
Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to $\sqrt{s} = 8$ TeV proton-proton collisions with an integrated luminosity of 20.2 fb$^{-1}$. The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of $\alpha_s(\mu)$ predicted in QCD up to scales over 1 TeV. A global fit to the transverse energy-energy correlation distributions yields $\alpha_s(m_Z) = 0.1162 \pm 0.0011 \mbox{ (exp.)}^{+0.0084}_{-0.0070} \mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\alpha_s(m_Z) = 0.1196 \pm 0.0013 \mbox{ (exp.)}^{+0.0075}_{-0.0045} \mbox{ (theo.)}$.
A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.
We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.
This paper presents a measurement of the polarisation of $\tau$ leptons produced in $Z/\gamma^{*}\rightarrow\tau\tau$ decays which is performed with a dataset of proton-proton collisions at $\sqrt{s}=8$ TeV, corresponding to an integrated luminosity of 20.2 fb$^{-1}$ recorded with the ATLAS detector at the LHC in 2012. The $Z/\gamma^{*}\rightarrow\tau\tau$ decays are reconstructed from a hadronically decaying $\tau$ lepton with a single charged particle in the final state, accompanied by a $\tau$ lepton that decays leptonically. The $\tau$ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic $\tau$ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The $\tau$ polarisation extracted over the full phase space within the $Z/\gamma^{*}$ mass range of 66$ < m_{Z/\gamma^{*}} < $ 116 GeV is found to be $P_{\tau} =-0.14 \pm 0.02 (\text{stat}) \pm 0.04 (\text{syst})$. It is in agreement with the Standard Model prediction of $P_{\tau} =-0.1517 \pm 0.0019$, which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA $\tau$ decay library.
A search for Higgs boson decays into a $Z$ boson and a light resonance in two-lepton plus jet events is performed, using a $pp$ collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector, or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95$\% $ confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a $Z$ boson and the signal resonance, with values in the range 17 pb to 340 pb ($16^{+6}_{-5}$ pb to $320^{+130}_{-90}$ pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 pb and 100 pb ($100^{+40}_{-30}$ pb and $100^{+40}_{-30}$ pb) for the $\eta_c$ and $J/\psi$ hypotheses, respectively.
We measure the forward-backward asymmetries $A_{\rm FB}$ of charged $\Xi$ and $\Omega$ baryons produced in $p \bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV as a function of the baryon rapidity $y$. We find that the asymmetries $A_{\rm FB}$ for charged $\Xi$ and $\Omega$ baryons are consistent with zero within statistical uncertainties.