The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.
Second systematic error depends on Rc=Delta(R_c)/R_c ratio, where Delta(R_c) is the deviation of R_c from the value 0.172 predicted by the Standard Model.
The NA50 collaboration has measured J/ψ , ψ′ and Drell Yan pair production in Pb Pb interactions at 158 GeV/ c per nucleon at the CERN SPS. Final results from the 1995 run and preliminary ones from the higher statistics 1996 run are presented. A anomalous J/ψ suppression (relative to the Drell-Yan process) has been observed with respect to the suppression pattern established in experiments NA38 and NA51 with proton, oxygen and sulfur beams. The 1996 data allow a detailed study of the suppression pattern in the Pb Pb sample itself, showing a discontinuity around an E T value (the neutral transverse electromagnetic energy) of 50 GeV. The ψ′ is also suppressed relative to Drell-Yan, with a pattern very similar to the one observed in S U collisions. Finally, the p T distributions of dimuons are presented. The average p T 2 of the J/ψ in Pb Pb collisions does not increase any more with E T above 100 GeV.
ET - neutral transverse energy in the electromagnetic calorimeter, etarap=1.1-2.3.
The reaction pp -> pf (pi+pi-pi0) ps has been studied at 450 GeV/c in an experiment designed to search for gluonic states. A spin analysis has been performed and the dPT filter applied. The analysis confirms the previous observation that all undisputed qqbar states are suppressed at small dPT. In addition, a clear difference is observed in the production mechanism for the eta and omega.
SIG(C=TOT) denotes the total cross section for each resonance. The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)).
Measurements of helicity density matrix elements have been made for the φ(1020), D*± and B* vector mesons in multihadronic Z0 decays in the OPAL experiment at LEP. Results for inclusive φ produced with high energy show evidence for production preferentially in the helicity zero state, with ρ00 = 0.54 ± 0.08, compared to the value of 1/3 expected for no spin alignment. The corresponding element for the D*± has a value of 0.40 ± 0.02, also suggesting a deviation from 1/3. The B* result, with ρ00 = 0.36 ± 0.09, is consistent with no spin alignment. Off-diagonal elements have been measured for the f and D* mesons; for the D* the element Re ρ1−1 is non-zero, indicating non-independent fragmentation of the primary quarks.
Helicity density matrices elements. Helicity beam frame is used.
Charge conjugated states are understood.
Helicity density matrices elements. Charge conjugated states are understood.
This paper describes an update of the double tagging measurement of the fraction, Rb, of Z0 → bb̅ events in hadronic Z0 decays, with statistics improved by including the data collected in 1994. The presence of electrons or muons from semileptonic decays of bottom hadrons and the detection of bottom hadron decay vertices were used together to obtain an event sample enriched in Z0 → bb̅ decays. The efficiency of the bb̅ event tagging was obtained from the data by comparing the numbers of events having a bottom signature in either one or both thrust hemispheres. Efficiency correlations between opposite event hemispheres are small (< 0.5%) and well understood through comparisons between the real and simulated data samples. A value of Rb= 0.2175 ± 0.0014 ± 0.0017 was obtained, where the first error is statistical and the second systematic. The uncertainty on the decay width Γ(Z0 → cc̅) is not included in these errors. The result depends on Rc as follows: $${⩼ Delta R_{⤪ b}⩈er R_{⤪ b}}=-0.084{⩼ Delta R_{⤪ c}⩈er R_{⤪ c}},$$ where ΔRc is the deviation of Rc from the value 0.172 predicted by the Standard Model.
No description provided.
The production rates of the $J_{P}={1⩈er 2}^{+}$ octet Σ baryons in hadronic Z0 decays have been measured using the OPAL detector at LEP. The inclusive production rates per hadronic Z0 decay of the three isospin states (including the respective antiparticle) have been separately measured for the first time: $άtrix {n_{Sigma^{+}}=0.099pm 0.008pm 0.013ŗ n_{Sigma^{0}}=0.071pm 0.012pm 0.013ŗ n_{Sigma^{-}}=0.083pm 0.006pm 0.009ŗ}$ where the first error is statistical and the second is systematic. Differential cross-sections are also presented for the Σ+ and Σ− and compared with JETSET and HERWIG predictions. Assuming full isospin symmetry, the average inclusive rate is: ${1⩈er 3}[n_{Sigma^{+}+Sigma^{0}+Sigma^{-}}]=0.084pm 0.005 ({⤪ stat.}) pm 0.008 ({⤪ syst.})$.
Differential cross section for SIGMA+ production.
Differential cross section for SIGMA- production.
No description provided.
A study of the reactions p Xe → K + K + X , p Xe → K + H(H → Σ − p)X and p Xe → K + K + H(H → Σ − p)X was performed using the 700-litre xenon bubble chamber DIANA, exposed to the 1 GeV/ c antiproton beam of ITEP (Moscow). From a sample of 7.8 · 10 5 antiproton annihilations at low energy in xenon nuclei 4 events were observed for the reaction p Xe | → K + K + X at rest ( P p ≤ 400 MeV /c ) and 8 for the same reaction in flight ( 400 ≤ P p ≤ 900 MeV /c ). The corresponding probabilities turned out to be 3.1 · 10 −5 and 3.4 · 10 −5 , respectively. No H -event was found in the two semi-inclusive reactions p Xe → K + HX and p Xe → K + K + HX . This lead to the upper limits 6 · 10 −6 and 8 · 10 −6 (90% C.L.), respectively. The corresponding upper limit for the fully inclusive reaction p Xe → HX turned out to be 1.2 · 10 −5 (90% C.L.), which is about one order of magnitude lower than the actual value reported in the literature.
No description provided.
None
Charged conjugate state is assumed.
Charmless hadronic decays of beauty mesons have been searched for using the data collected with the DELPHI detector at the LEP collider. Several two, three and four-body decay modes have been investigated. Particle identification was used to distinguish the final states with protons, kaons and pions. Three candidate events selected in two-body decay modes are interpreted as evidence for charmless B decays. No excess has been found in higher multiplicity modes and improved upper limits for some of the branching ratios are given.
Two body decay modes. Upper limits at 90% CL. In computing of limits the fractions of B/(d,u)(0,-) and B/S0 mesons were assumed to be 0.39 and 0.12 respectively. Limits are given for the weighted average of the decay rates of the two neutral B mesons.
Three body decay modes. Upper limits at 90% CL.
Four body decay modes. Upper limits at 90% CL.
Antiproton production cross-sections have been measured for p+C, C+C, C+Cu and C+Pb collisions at 3.65 GeV/nucleon.\(\bar p\) laboratory momentum and angle are 0.8 GeV/c and 24°. The target mass dependence parameter is found to be 0.43±0.1. A strong increase in antiproton yield is observed from p+C, d+C to C+C collisions. Projectile mass parameter is 1.2±0.2 for d+C to C+C. The construction and calibration of APAKI, an annihilation detector for\(\bar p\) identification, are also described.
No description provided.