Neutral Pion Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 044905, 2009.
Inspire Record 825863 DOI 10.17182/hepdata.96845

The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.

0 data tables match query

On the evolution of the nuclear modification factors with rapidity and centrality in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 93 (2004) 242303, 2004.
Inspire Record 645789 DOI 10.17182/hepdata.89444

We report on a study of the transverse momentum dependence of nuclear modification factors $R_{dAu}$ for charged hadrons produced in deuteron + gold collisions at $\sqrt{s_{NN}=\unit[200]{GeV}$, as a function of collision centrality and of the pseudorapidity ($\eta = 0,1,2.2,3.2 $) of the produced hadrons. We find significant and systematic decrease of $R_{dAu}$ with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at RHIC energies.

0 data tables match query

Transverse momentum spectra in Au + Au and d + Au collisions at s(NN)**(1/2) = 200-GeV and the pseudorapidity dependence of high p(T) suppression.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 91 (2003) 072305, 2003.
Inspire Record 622645 DOI 10.17182/hepdata.89442

We present spectra of charged hadrons from Au+Au and d+Au collisions at $\sqrt{s_{NN}}=200$ GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from ${\rm p}+\bar{{\rm p}}$ collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at $\eta=0$ and $\eta=2.2$ evidence a strong suppression in the high $p_{T}$ region ($>$2 GeV/c). In contrast, the d+Au nuclear modification factor (at $\eta=0$) exhibits an enhancement of the high $p_T$ yields. These measurements indicate a high energy loss of the high $p_T$ particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.

0 data tables match query