This paper presents the observation of four-top-quark ($t\bar{t}t\bar{t}$) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured $t\bar{t}t\bar{t}$ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The $t\bar{t}t\bar{t}$ production cross section is measured to be $22.5^{+6.6}_{-5.5}$ fb, consistent with the SM prediction of $12.0 \pm 2.4$ fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect $t\bar{t}t\bar{t}$ production.
Post-fit distributions for the number of jets ($N_{j}$) in CR $t\bar{t}W^{+}$+jets. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.
Post-fit distributions for the number of jets ($N_{j}$) in CR $t\bar{t}W^{-}$+jets. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.
Post-fit distributions for the number of jets ($N_{j}$) in CR 1b(+). The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.
Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs ($t\bar{t}$) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a $pp$ collision energy of $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 140 fb$^{-1}$. The measurements use events containing an oppositely charged $e\mu$ pair and $b$-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton $p_{\text{T}}$ distributions is obtained by reweighting the $t\bar{t}$ sample so as to reproduce the top-quark $p_{\text{T}}$ distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be \[ \sigma_{t\bar{t}} = 829 \pm 1\;(\textrm{stat}) \pm 13\;(\textrm{syst}) \pm 8\;(\textrm{lumi}) \pm 2\; (\textrm{beam})\ \textrm{pb}, \] where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.
Definition of the fiducial phase space with the lepton candidate, electron $e$ and muon $\mu$, and jets.
Breakdown of systematic uncertainties in the measured fiducial cross-section. The impact of the top-quark mass on the cross-section is included in the table and not counted in the total uncertainty entry in the paper.
Data bootstrap post unfolding for the fiducial cross-section. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. All the provided numbers originate from pseudo-data, including the 0th entry, and are in units of [fb].
The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector at the CERN Large Hadron Collider. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parametrizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions.
Centrality dependence of ${\rm SC}(2,3)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of ${\rm AC}_{2,1}(2,3)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of ${\rm AC}_{1,2}(2,3)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.
Inclusive JPSI pair cross section in $2.5 < y < 4.0$.
The interactions of kaons (K) and antikaons ($\mathrm{\overline{K}}$) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and $\mathrm{\overline{K}}$NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlations measured in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV by the ALICE Collaboration. The analysis shows that the measured p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states.
The (p-p)-K$^+$ correlation function obtained using the data-driven approach.
The p-(p-K$^+$) correlation function obtained using the data-driven approach.
Lower-order contributions to the p-p-K$^+$ correlation function obtained using the data-driven approach.
Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s} = 13$ TeV at midrapidity with the ALICE detector are presented down to a transverse momentum ($p_{\rm T}$) of 0.2 GeV$/c$ and up to $p_{\rm T} = 35$ GeV$/c$, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p$-$Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the $p_{\rm T}$ range $0.5 < p_{\rm T} < 26$ GeV$/c$ at $\sqrt{s_{\rm NN}} = 8.16$ TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p$-$Pb collisions grow faster than linear with the self-normalised multiplicity. A strong $p_{\rm T}$ dependence is observed in pp collisions, where the yield of high-$p_{\rm T}$ electrons increases faster as a function of multiplicity than the one of low-$p_{\rm T}$ electrons. The measurement in p$-$Pb collisions shows no $p_{\rm T}$ dependence within uncertainties. The self-normalised yields in pp and p$-$Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.
pT-differential cross section of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s}$ = 13 TeV measured at midrapidity
pT-differential cross section of electrons from heavy-flavour hadron decays in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV measured at midrapidity
The Nuclear modification factor RpPb of electrons from heavy-flavour hadron decays in p--Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV
PHENIX presents a simultaneous measurement of the production of direct $\gamma$ and $\pi^0$ in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over a $p_T$ range of 7.5 to 18 GeV/$c$ for different event samples selected by event activity, i.e. charged-particle multiplicity detected at forward rapidity. Direct-photon yields are used to empirically estimate the contribution of hard-scattering processes in the different event samples. Using this estimate, the average nuclear-modification factor $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is $0.925{\pm}0.023({\rm stat}){\pm}0.15^{\rm (scale)}$, consistent with unity for minimum-bias (MB) $d$$+$Au events. For event classes with moderate event activity, $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is consistent with the MB value within 5% uncertainty. These results confirm that the previously observed enhancement of high-$p_T$$\pi^0$ production found in small-system collisions with low event activity is a result of a bias in interpreting event activity within the Glauber framework. In contrast, for the top 5% of events with the highest event activity, $R_{d\rm Au,EXP}^{\gamma^{\rm dir}}$ is suppressed by 20% relative to the MB value with a significance of $4.5\sigma$, which may be due to final-state effects.
The $p_{T}$ distribution at high $p_{T}$ of neutral pions (panel (a)) for different d+Au event activity classes compared to those from p+p collisions (Phys. Rev. C 105, 064902).
The $p_{T}$ distribution at high $p_{T}$ of direct photons (panel (b)) for different d+Au event activity classes compared to those from p+p collisions (Phys. Rev. D 86, 072008).
Panel (c) shows the ratio $\gamma^{dir}/\pi^{0}$. For better visibility the points are slightly shifted in $p_{T}$ .
The first measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1.21 fb$^{-1}$, are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $\mathrm{t\bar{t}}$ production cross section of 881 $\pm$ 23 (stat+syst) $\pm$ 20 (lumi) pb is measured, in agreement with the standard model prediction of 924 $^{+32}_{-40}$ pb.
Comparison of the number of observed (points) and predicted (filled histograms) events in the final analysis binning. The predictions are shown before fitting the model to the data. The lower panel of the plot displays the ratio of the event yields in data to the sum of predicted signal and background yields. The vertical bars on the points represent the statistical uncertainties in the data, while the hatched bands represent systematic uncertainty in the predictions, excluding the integrated luminosity. No b jet efficiency scale factors are applied in the plot, and no systematic uncertainty entering into the hatched bands is intended to cover thesefactors, which are free parameters in the fit.
Comparison of the number of observed (points) and predicted (filled histograms) events in the final analysis binning. The predictions are shown after fitting the model to the data. The lower panel of each plot displays the ratio of the event yields in data to the sum of predicted signal and background yields. The vertical bars on the points represent the statistical uncertainties in the data, while the hatched bands represent systematic uncertainty in the predictions, excluding the integrated luminosity. The hatched bands are greatly reduced due to additional constraint of the nuisances parameters as well as correlations between them.
Result for the inclusive ttbar production cross section
The polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild $p_T$ dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and $p_T$ dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
$sgn(\alpha_H)\langle\cos(\theta_p^{\ast})\rangle$ of $\Lambda$ and $\bar{\Lambda}$ as a function of hyperon azimuthal angle relative to the second-order event plane in isobar collisions at 200 GeV.
$sgn(\alpha_H)\langle\cos(\theta_p^{\ast})\rangle$ of $\Lambda$ and $\bar{\Lambda}$ as a function of hyperon azimuthal angle relative to the third-order event plane in isobar collisions at 200 GeV.
$P_z$ sine coefficients of $\Lambda+\bar{\Lambda}$ as a function of centrality in isobar collisions at 200 GeV.
A search is reported for excited $\tau$-leptons and leptoquarks in events with two hadronically decaying $\tau$-leptons and two or more jets. The search uses proton-proton (pp) collision data at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015-2018. The total integrated luminosity is 139 fb$^{-1}$. The excited $\tau$-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary $\tau$-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a $\tau$-lepton. No excess over the background prediction is observed. Excited $\tau$-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale $\Lambda$ set to 10 TeV. At the extreme limit of model validity where $\Lambda$ is set equal to the excited $\tau$-lepton mass, excited $\tau$-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a $\tau$-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region.
Observed and expected upper 95% CL limit on the $\tau^\ast$ production cross-section as a function of $m_{\tau^\ast}$ for a fixed value of the contact interaction scale, $\Lambda = 10$ TeV.
Observed and expected lower 95% CL limit on the contact interaction scale $\Lambda$ as a function of $m_{\tau^\ast}$.
Observed and expected upper 95% CL limit on the LQ production cross-section as a function of $m_\mathrm{LQ}$. The LQ couples to a tau lepton and a c-quark. The limits are also valid for scenarios in which the LQ couples to lighter quarks.