A systematic study of p p and p d reactions producing strange particles between 1.09 and 3.45 GeV/ c has been completed. Reaction and resonance cross-section data are presented at 11 p p and 13 p d momentum settings. Evidence for a broad shoulder in the K K 3π final state near 1.8 GeV/ c is presented and contrasted to previously published work on a portion of the final data sample. No evidence for a p n → K 0 K − ω effect near 1.3 GeV/ c is found, ruling out an association of K K ω effects with the nearby isospin one enhancement in the total cross section. Finally, we find no evidence for a p p → K K ω enhancement near 1.8 GeV/ c .
No description provided.
No description provided.
No description provided.
None
'1'.
'2'.
'1'.
A systematic study of p p and p d resonance production cross sections in non-strange annihilation channels between 1.51 and 2.90 GeV/ c has been completed. The data have been analysed in relation to the three known structures at c.m. N N energies of 2190, 2350 and 2375 MeV. Several resonance intermediate states may have broad maxima near the isopin one 2350 MeV structure. However, more data below 1.6 GeV/ c are required to better describe the background in this region before firm conclusions may be drawn.
No description provided.
No description provided.
A systematic study of p p and p d topological and reaction cross sections between 1.51 and 2.90 GeV/ c has been completed. The data have been analysed in relation to the three known structures at c.m. N N energies of 2190, 2350 and 2375 MeV. The data suggest that four- and six-pion annihilations of antiprotons on neutrons may be the source of the 2350 MeV effect. Further data below 1.60 GeV/ c are required to verify this tentative conclusion.
No description provided.
INCLUDING 3 PCT SYSTEMATIC ERROR.
No description provided.
Final state resonance production and single particle momentum spectra are presented for p p annihilations into K K and π's between 1.09 and 3.45 GeV/ c . Resonance production generally agrees with the Lamb statistical model. Momentum spectra of K's and π's are independent of incident energy, while the mean multiplicity increases in proportion to the c.m. energy, supporting the annihilation model of Jacob and Nussinov.
THESE CROSS SECTIONS WERE GIVEN IN DETAIL IN B. Y. OH ET AL., NP B51, 57 (1973).
No description provided.
A total of 24 360 events having two charged particles in the final state from π−+p interactions at an incident π− momentum of 2.7 GeVc have been analyzed. The final states π−π+n and π−π0p are found to be dominated by rho-meson production, and in addition, significant N*(1238) production is seen. The partial cross sections for the dominant resonant channels are σ=(pρ−)=(1.3±0.2) mb, σ(nρ0)=(2.3±0.2) mb, and σ[π−N*+(→pπ0)]=(0.5±0.2) mb. The production of the ρ− and ρ0 and the decay of the ρ− agree very well with the predictions of an absorption-modified one-pion-exchange model. The production angular distributions of the ρ0 and ρ− follow an exponential of the form Ae+Bt. The results from a least-squares fit give B(ρ−)=9.32±0.08 (GeVc)−2, B(ρ0)=10.26±0.06 (GeVc)−2. A similar analysis for the elastic-scattering events gave B(el)=7.77±0.05 (GeVc)−2. The ρ0 decay distributions are asymmetric and they have been analyzed using a simple model which includes S−P-wave interference. No clear evidence is seen for a T=0, J=0 resonance at a mass near that of the ρ. The N*(1238) resonance production is found to be in agreement with the ρ-exchange model of Stodolsky and Sakurai. Indication of other resonance production with small cross section is seen, such as A1 and A2 production in the multiple missing neutral events. The masses and widths of the ρ0 and ρ− as a function of the four-momentum transfer squared to the nucleon have been determined.
No description provided.
In a bubble chamber experiment, we have measured p p elastic scattering at nine momenta in the range 1.51–2.90 GeV/ c . The extrapolation of the small angle region to t = 0 is discussed and compared with results of other experiments. The differential cross sections are fitted to an adaptation of the Frahn-Venter optical model and also compared to Regge-pole model predictions.
'1'. '2'. '3'.
'1'. '3'.
'2'.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.