We present data from a spark-chamber study of K+p elastic scattering between 432 and 939 MeV/c, over the range −0.6
No description provided.
No description provided.
No description provided.
We present experimental results on K + d interactions from 865 to 1585 MeV/ c incident beam momentum. We report measurements of several K + d partial cross sections and calculate most of the others using relations derived from isospin conservation and data from other experiments. The most striking feature of the cross section data is the abrupt rise of the total single-pion-production cross section near 1000 MeV/ c . We extract isospin-0 KN partial cross sections and find a rapid quasi-two-body reaction KN → K ∗ N . As in the case of the isospin-1 K + N system, it appears that the structure around 1200 MeV/ c in the total cross section for the isospin-0 K ∗ N system is well reconstructed by the sum of three smoothly varying channel cross sections σ 0 (KN), σ 0 (KN π ) and σ 0 (KN ππ ). We study thereaction KN → K ∗ N near threshold and find that the production and decay angular distributions can be interpreted in terms of t -channel phenomena, specifically a superposition of ω, ϱ, and π exchange. As is true of the isospin-1 KΔ and K ∗ N final states, the isospin-0 K ∗ N state has a behavior near threshold which is not very different from its behavior at much higher energy.
No description provided.
No description provided.
No description provided.
The differential cross section for K + p elastic scattering has been measured at 864, 969 and 1207 MeV/ c . Our data show a smooth transition from low-energy s-wave scattering to high-energy diffraction, and are some-what in disagreement with a recent experiment on K + p backward scattering.
The data at COS(THETA) = -1 or 1 come from the Legendre fits (see text).
The data at COS(THETA) = -1 or 1 come from the Legendre fits (see text).
The data at COS(THETA) = -1 or 1 come from the Legendre fits (see text).
Total cross sections of π+ and π− mesons on protons and deuterons have been measured in a transmission experiment to relative accuracies of ±0.2% over the laboratory momentum range 0.46-2.67 GeV/c. The systematic error is estimated to be about ±0.5% over most of the range, increasing to about ±2% near both ends. Data have been obtained at momentum intervals of 25-50 MeV/c with a momentum resolution of ±0.6%. No new structure is observed in the π±p total cross sections, but results differ in several details from previous experiments. From 1-2 GeV/c, where systematic erros are the smallest, the total cross section of π− mesons on deuterons is found to be consistently higher than that of π+ mesons by (1.3±0.3)%; about half of this difference may be understood in terms of Coulomb-barrier effects. The πd and πN total cross sections are used to check the validity of the Glauber theory. Substantial disagreements (up to 2 mb) are observed, and the conclusion is drawn that the Glauber theory is inadequate in this momentum range.
No description provided.
No description provided.