Measurement of direct photon pair production cross sections in ppbar collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 690 (2010) 108-117, 2010.
Inspire Record 846997 DOI 10.17182/hepdata.54534

We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.

13 data tables

Single differential cross section DSIG/DM.

Single differential cross section DSIG/DPT.

Single differential cross section DSIG/DPHI.

More…

Measurement of the dijet invariant mass cross section in proton anti-proton collisions at sqrt{s} = 1.96 TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 693 (2010) 531-538, 2010.
Inspire Record 846483 DOI 10.17182/hepdata.54666

The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1} integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data.

6 data tables

Dijet double differential cross section for the absolute rapidity region 0.0 to 0.4.

Dijet double differential cross section for the absolute rapidity region 0.4 to 0.8.

Dijet double differential cross section for the absolute rapidity region 0.8 to 1.2.

More…

Measurement of the Inclusive Jet Cross Section at the Fermilab Tevatron p-pbar Collider Using a Cone-Based Jet Algorithm

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.D 78 (2008) 052006, 2008.
Inspire Record 790693 DOI 10.17182/hepdata.52402

We present a measurement of the inclusive jet cross section in p-pbar collisions at sqrt{s}=1.96 TeV based on data collected by the CDF II detector with an integrated luminosity of 1.13 fb^-1. The measurement was made using the cone-based Midpoint jet clustering algorithm in the rapidity region of |y|<2.1. The results are consistent with next-to-leading-order perturbative QCD predictions based on recent parton distribution functions (PDFs), and are expected to provide increased precision in PDFs at high parton momentum fraction x. The results are also compared to the recent inclusive jet cross section measurement using the k_T jet clustering algorithm, and we find that the ratio of the cross sections measured with the two algorithms is in agreement with theoretical expectations over a large range of jet transverse momentum and rapidity.

11 data tables

Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region < 0.1. The bin-by-bin correction factors from parton to hadron-level are also tabulated.

Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region 0.1 to 0.7. The bin-by-bin correction factors from parton to hadron-level are also tabulated.

Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region 0.7 to 1.1. The bin-by-bin correction factors from parton to hadron-level are also tabulated.

More…

Measurement of the inclusive jet cross-section in p anti-p collisions at s**(1/2) =1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 101 (2008) 062001, 2008.
Inspire Record 779574 DOI 10.17182/hepdata.57758

We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.

36 data tables

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.

More…

Measurement of the isolated photon cross section in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 639 (2006) 151-158, 2006.
Inspire Record 698784 DOI 10.17182/hepdata.43096

The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|&lt;0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.

1 data table

Measured differential cross section for the production of isolated photons.


Measurement of inclusive differential cross sections for Upsilon(1S) production in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 232001, 2005.
Inspire Record 676877 DOI 10.17182/hepdata.51525

We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.

2 data tables

Cross section per unit of rapidity times branching ratio to MU+ MU-. Systematic (DSYS) error does not include the 6.1 PCT uncertainty on the luminosity.

Normalized differential cross section for UPSI(1S) production.. Errors contain statistical and systematics (excluding luminosity error).


Production characteristics of K0 and light meson resonances in hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 65 (1995) 587-602, 1995.
Inspire Record 377487 DOI 10.17182/hepdata.48348

An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.

13 data tables

Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.

Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.

Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.

More…