Differential cross sections for the reaction π−p→π0n were measured at nine incident-pion kinetic energies in the interval from 500 to 1300 MeV. The negative pion beam from the bevatron was focused on a liquidhydrogen target completely surrounded by a cubic array of six steel-plate spark chambers. The spark chambers were triggered on events with neutral final states. Charge-exchange events were identified from the one-shower and two-shower events in the spark-chamber pictures. By the Monte Carlo technique, the π0 distributions were calculated from the bisector distributions of the two-shower π0 events together with the observed γ-ray distributions of the one-shower π0 events. These π0 distributions were fitted with both Legendre-polynomial expansions and power-series expansions by the method of least squares. The extrapolated forward differential cross sections are in good agreement with the dispersion calculations. The Legendre coefficients for the differential cross sections in isospin state T=12 were obtained by combining our results with available data on π±p elastic scattering. In the light of existing phase-shift solutions, the behavior of these coefficients is discussed. The D5F5 interference term that peaks near 900 MeV is verified to be in isospin state T=12 only. We report here also the total neutral cross sections and the cross sections for the production of neutral multipion final states 2π0n and 3π0n. The 4π solid angle and the calibrated energy response of the spark chambers contribute to the accuracy of the results.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
None
No description provided.
A quasi-two-body model based on one-particle exchange and diffraction dissociation has been fitted to data from π−p interactions at 3.9 and 11.9 GeV/c in which a nucleon and 3-6 pions are present in the final state. It is used to estimate partial cross sections for the contributing interaction mechanisms and the dominant resonances which are produced at these energies. The energy dependence of the cross sections is examined and found to be consistent with expected behavior, and reactions are compared and found to agree with simple factorization.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.
No description provided.
No description provided.
No description provided.
We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.
No description provided.
No description provided.
RAPIDITY IS MEASURED IN 'QUARK' REST FRAME DEFINED AS Y(Q)=Y(LAB)-LOG(W**2/M**2) WHERE Y(LAB)=0.5*LOG((E+PL)/(E-PL)).
A charge hyperon beam has been brought into operation at the CERN SPS. Particles are identified by a DISC Čerenkov counter, and decay products are analysed by a magnetic spectrometer. Cross sections for the inclusive production of π + , K + , p , Σ + , Σ − , ζ − , d, and π − , K − , p , Σ + , Σ − , ζ − , ω − , d in the forward direction have been measured at laboratory momenta between 70 and 130 GeV/ c . This range of momenta corresponds to 0.35 ⩽ x ⩽ 0.66 for an incident proton momentum of 200 GeV/ c . Antihyperon ( Σ − , ζ − , Σ + ) and Σ + and ω − fluxes have been measured for the first time in a hyperon beam.
No description provided.
No description provided.
No description provided.
Differential cross-section and polarization measurements for the reaction π − p → K 0 Σ 0 are presented from 1395 to 2375 MeV/ c incident beam momentum. The polarization data from an earlier experiment, from thershold to 1334 MeV/ c , have been re-analysed by an improved method leading to a substantial reduction in the errors.
No description provided.
TOTAL CROSS SECTIONS DERIVED FROM LEGENDRE POLYNOMIAL FITS TO ANGULAR DISTRIBUTIONS.
LEGENDRE POLYNOMIAL FITS TO D(SIG)/DOMEGA.
We have examined the inclusive production of nonstrange particle resonances in νp interactions using the Fermilab 15-ft bubble chamber. A sample of 2437 charged-current events with visible longitudinal momentum greater than 10 GeV/c was obtained. The ρ0 and Δ++(1232) are seen. An overall rate of 0.21±0.04 ρ0 per event is found. For five-prong events, the rate is 0.44±0.08 ρ0 per event. The ρ0Z distribution falls rapidly for Z greater than 0.4. The production of Δ++ is seen clearly in events with an identified proton. No evidence is seen for Δ0 production. An upper limit of 0.34 is placed on the ratio of ηπ0 (90% confidence level).
NO CLEAR DEL0 SIGNAL.
Measurements of the production inp-BeO collisions of charged baryons and antibaryons with strangeness between −3 and +3 at\(\sqrt s= 21.2GeV\)x=0.48, andpT=600MeV/c are reported. The experimental results can be interpreted within the framework of a simple proton fragmentation-recombination model.
No description provided.
No description provided.
No description provided.