Date

Version 2
Measurement of jet substructure observables in $\mathrm{t\overline{t}}$ events from proton-proton collisions at $\sqrt{s} =$ 13TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 98 (2018) 092014, 2018.
Inspire Record 1690148 DOI 10.17182/hepdata.84716

A measurement of jet substructure observables is presented using \ttbar events in the lepton+jets channel from proton-proton collisions at $\sqrt{s}=$ 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Multiple jet substructure observables are measured for jets identified as bottom, light-quark, and gluon jets, as well as for inclusive jets (no flavor information). The results are unfolded to the particle level and compared to next-to-leading-order predictions from POWHEG interfaced with the parton shower generators PYTHIA 8 and HERWIG 7, as well as from SHERPA 2 and DIRE2. A value of the strong coupling at the Z boson mass, $\alpha_S(m_\mathrm{Z}) = $ 0.115$^{+0.015}_{-0.013}$, is extracted from the substructure data at leading-order plus leading-log accuracy.

132 data tables

Distribution of $\lambda_{0}^{0}$ (N) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.

Distribution of $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.

Distribution of $\lambda_{0.5}^{1}$ (LHA) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.

More…

Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 160, 2012.
Inspire Record 1111014 DOI 10.17182/hepdata.70063

Measurements of jet characteristics from inclusive jet production in proton-proton collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was collected with the CMS detector at the LHC during 2010 and corresponds to an integrated luminosity of 36 inverse picobarns. The mean charged hadron multiplicity, the differential and integral jet shape distributions, and two independent moments of the shape distributions are measured as functions of the jet transverse momentum for jets reconstructed with the anti-kT algorithm. The measured observables are corrected to the particle level and compared with predictions from various QCD Monte Carlo generators.

128 data tables

The measured differential jet shape $\rho(r)$ for jets with 20 GeV $< p_{\mathrm{T}} <$ 25 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

The measured differential jet shape $\rho(r)$ for jets with 25 GeV $< p_{\mathrm{T}} <$ 30 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

The measured differential jet shape $\rho(r)$ for jets with 30 GeV $< p_{\mathrm{T}} <$ 40 GeV and 0 <|y|< 0.5. The CF in the table refers to unfolding correction factor from {\sc pythia6} Tune Z2. The systematic uncertainties from different sources, jet energy scale (JES), unfolding, and single particle response (SPR), are also presented.

More…

Measurement of the Underlying Event Activity at the LHC with sqrt(s)= 7 TeV and Comparison with sqrt(s) = 0.9 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 09 (2011) 109, 2011.
Inspire Record 916908 DOI 10.17182/hepdata.57696

A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.

15 data tables

Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 0.9 TeV.

Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV.

Ratio of the fully corrected charged particle multiplicity at 7 TeV to that at 0.9 TeV.

More…

Charged particle multiplicities in pp interactions at sqrt(s) = 0.9, 2.36, and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 01 (2011) 079, 2011.
Inspire Record 879315 DOI 10.17182/hepdata.57909

Measurements of primary charged hadron multiplicity distributions are presented for non-single-diffractive events in proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36, and 7 TeV, in five pseudorapidity ranges from |eta|<0.5 to |eta|<2.4. The data were collected with the minimum-bias trigger of the CMS experiment during the LHC commissioning runs in 2009 and the 7 TeV run in 2010. The multiplicity distribution at sqrt(s) = 0.9 TeV is in agreement with previous measurements. At higher energies the increase of the mean multiplicity with sqrt(s) is underestimated by most event generators. The average transverse momentum as a function of the multiplicity is also presented. The measurement of higher-order moments of the multiplicity distribution confirms the violation of Koba-Nielsen-Olesen scaling that has been observed at lower energies.

29 data tables

Mean multiplicity for charged hadron production for |pseudorapidity| < 2.4.

Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 0.5 at a centre-of-mass energy of 900 GeV.

Fully corrected charged hadron multiplicity spectrum for |pseudorapidity| < 1.0 at a centre-of-mass energy of 900 GeV.

More…

Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 70 (2010) 555-572, 2010.
Inspire Record 857644 DOI 10.17182/hepdata.55126

A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.

7 data tables

Average multiplicity of charged particles per unit of pseudorapidity as a function of pseudorapidity for events with leading track-jet transverse momenta > 1 and > 3 GeV. Statistical errors only.

Average scalar sum of the transverse momenta of charged particles per unit of pseusdorapidity and per radian as a function of DELTA(PHI) for events with leading track-jet transverse momenta > 1 and > 2 GeV. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.

The average multiplicity and average scalar sum of transverse momenta of charge particles per unit of pseudorapidity and per radian as a function of the leading track transverse momenta. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.

More…

Multiplicity structure of the hadronic final state in diffractive deep-inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 5 (1998) 439-452, 1998.
Inspire Record 469495 DOI 10.17182/hepdata.44363

The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.

10 data tables

The multiplicity moment MULT as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

The multiplicity moment DISPERSION as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

The multiplicity moment R2 as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.

More…

Evolution of e p fragmentation and multiplicity distributions in the Breit frame.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 504 (1997) 3-23, 1997.
Inspire Record 445116 DOI 10.17182/hepdata.44587

Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken-x and Q^2, and KNO scaling is discussed.

25 data tables

The current hemisphere fragmentation as a function of XP in the Breit frame.

The current hemisphere fragmentation as a function of LN(1/XP) in the Breitframe.

Current hemisphere fragmentation as a function of Q for the XP range 0.02 to 0.05, to show scaling violations.

More…

Charged particle multiplicities in deep inelastic scattering at HERA.

The H1 collaboration Aid, S. ; Anderson, M. ; Andreev, V. ; et al.
Z.Phys.C 72 (1996) 573-592, 1996.
Inspire Record 422230 DOI 10.17182/hepdata.44709

Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic ep scattering have been measured over a large kinematical region. The evolution with $W$ and $Q~2$ of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, $e~+e~-$ annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.

12 data tables

Fully corrected multiplicity distributions. Note that the value of P0 in the 1 to 5 pseudorapidity region is not measured but taken from the reweighted DJANGO 6.0 Monte Carlo generator.

Fully corrected multiplicity distributions. Note that the value of P0 in the 1 to 5 pseudorapidity region is not measured but taken from the reweighted DJANGO 6.0 Monte Carlo generator.

Fully corrected multiplicity distributions. Note that the value of P0 in the 1 to 5 pseudorapidity region is not measured but taken from the reweighted DJANGO 6.0 Monte Carlo generator.

More…

Strangeness production in deep-inelastic positron proton scattering at HERA.

The H1 collaboration Aid, S. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 480 (1996) 3-34, 1996.
Inspire Record 421030 DOI 10.17182/hepdata.44711

Measurements are presented of $K~0$ meson and $\Lambda$ baryon production in deep-inelastic positron-proton scattering (DIS) in the kinematic range $10 < Q~2 < 70\,$GeV$~2$ and $10~{-4} < x < 10~{-2}$. The measurements, obtained using the H1 detector at the HERA collider, are discussed in the light of possible mechanisms for increased strangeness production at low Bjorken-$x$. Comparisons of the $x_F$ spectra, where $x_F$ is the fractional longitudinal momentum in the hadronic centre-of-mass frame, with results from electron-positron annihilation are made. The $x_F$ spectra and the $K~0$ ``seagull'' plot are compared with previous DIS results. The mean $K~0$ and $\Lambda$ multiplicities are studied as a function of the centre-of-mass energy $W$ and are observed to be consistent with a logarithmic increase with $W$ when compared with previous measurements. A comparison of the levels of strangeness production in diffractive and non-diffractive DIS is made. An upper limit of $0.9\,$nb, at the $95\%$ confidence level, is placed on the cross-section for QCD instanton induced events.

5 data tables

The XL distribution for K0 particles.

The XL distribution for LAMBDA particles.

Corrected Mean PT**2 for K0 production RE = E+ P --> E+ K0 X.

More…