This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> ATLAS public webpage of paper: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2019-03/">link</a><br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> Common: N E = N MU = 1, CHARGE E != CHARGE MU <li> NJETS >= 2, NBJETS >= 2 <li> NJETS >= 3, NBJETS >= 3 <li> NJETS >= 4, NBJETS >= 3 <li> NJETS >= 4, NBJETS >= 4 <li> NJETS >= 5, NBJETS >= 4 </ul><br/> <b>Objects definitions:</b> <ul> <li> LEP PT > 28 GeV, ABS ETARAP LEP < 2.5 <li> JET PT > 25 GeV, ABS ETARAP JET < 2.5, R JET = 0.4 <li> BJET: >=1 b-hadron with PT > 5 GeV is associated to the jet via ghost matching </ul><br/> <b>Particle level:</b><br/> <br/>Data from Table 06: <a href="153521?table="Fiducial xsec results>Fiducial xsec results </a><br/><br/> <u>1D:</u><br/> Data bootstraps: <ul> <li> Data from Figure 09: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥2b$">Bootstrap $N_{b-jets}$ in $≥2b$ </a> <li> Data from Figure 10a: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥3b$">Bootstrap $N_{b-jets}$ in $≥3b$ </a> <li> Data from Figure 10b: <a href="153521?table=Bootstrap $N_{c/l-jets}$ in $≥3b$">Bootstrap $N_{c/l-jets}$ in $≥3b$ </a> <li> Data from Figure 10c: <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥3b$">Bootstrap $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Figure 10d: <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Figure 11a: <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥3b$">Bootstrap $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Figure 11b: <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Figure 11c: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Figure 11d: <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Figure 12a: <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥3b$">Bootstrap $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Figure 12b: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 13a: <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥3b$">Bootstrap $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13b: <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13c: <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥3b$">Bootstrap $m(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 13d: <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥3b$">Bootstrap $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 14a: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 14b: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14c: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14d: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 15a: <a href="153521?table=Bootstrap $m(bb^{min\Delta R})$ in $≥4b$">Bootstrap $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15b: <a href="153521?table=Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$">Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15c: <a href="153521?table=Bootstrap $m(bb^{add})$ in $≥4b$">Bootstrap $m(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 15d: <a href="153521?table=Bootstrap $p_{T}(bb^{add})$ in $≥4b$">Bootstrap $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 01a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥3b$">Bootstrap $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Figure 01b (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Figure 02a (aux): <a href="153521?table=Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$">Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 02b (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥3b$">Bootstrap $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Figure 03a (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Figure 03b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Figure 04a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥3b$">Bootstrap $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Figure 04b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 05a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥3b$">Bootstrap $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Figure 05b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥3b$">Bootstrap $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Figure 05c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Figure 05d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Figure 06a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥4b$">Bootstrap $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Figure 06b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Figure 06c (axu): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Figure 06d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Figure 07a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥4b$">Bootstrap $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Figure 07b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{4})$ in $≥4b$">Bootstrap $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Figure 07c (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 07d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Figure 08a (aux): <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥4b$">Bootstrap $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 08b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 09a (aux): <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥4b$">Bootstrap $m(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 09b (aux): <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥4b$">Bootstrap $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 10a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥4b$">Bootstrap $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Figure 10b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 11a (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥4b$">Bootstrap $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Figure 11b (aux): <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥4b$">Bootstrap $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Figure 11c (aux): <a href="153521?table=Bootstrap min$\Delta R(bb)$ in $≥4b$">Bootstrap min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Figure 11d (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 12a (aux): <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Figure 12b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Figure 12c (aux): <a href="153521?table=Bootstrap $N_{l/c-jets}$ in $≥4b$">Bootstrap $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Figure 13a (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13b (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13c (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13d (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 14a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥4b$">Bootstrap $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Figure 14b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥4b$">Bootstrap $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Figure 14c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Figure 14d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Figure 15a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥4b$">Bootstrap $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Figure 15b (aux): <a href="153521?table=Bootstrap $|\eta(b_{4})|$ in $≥4b$">Bootstrap $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Figure 15c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Figure 15d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$ </a> </ul><br/> Measurements: <ul> <li> Data from Table 01 (aux): <a href="153521?table=Diff. XS $N_{b-jets}$ in $≥2b$">Diff. XS $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 02 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥3b$">Diff. XS $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 03 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥3b$">Diff. XS $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 04 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 05 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 06 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥3b$">Diff. XS $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 07 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 08 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 09 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 10 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥3b$">Diff. XS $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 11 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 12 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥3b$">Diff. XS $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 13 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 14 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥3b$">Diff. XS $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 15 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 16 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥3b$">Diff. XS $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 17 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 18 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥3b$">Diff. XS $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 19 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 20 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥3b$">Diff. XS $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 21 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥3b$">Diff. XS $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 22 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 23 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥3b$">Diff. XS $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 24 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 25 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥3b$">Diff. XS $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 26 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 27 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 28 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 29 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 30 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 31 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 32 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥4b$">Diff. XS $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 33 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥4b$">Diff. XS $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 34 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 35 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 36 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥4b$">Diff. XS $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 37 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 38 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 39 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 40 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥4b$">Diff. XS $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 41 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 42 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{4})$ in $≥4b$">Diff. XS $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 43 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 44 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥4b$">Diff. XS $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 45 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 46 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥4b$">Diff. XS $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 47 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 48 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥4b$">Diff. XS $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 49 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 50 (aux): <a href="153521?table=Diff. XS $|\eta(b_{4})|$ in $≥4b$">Diff. XS $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 51 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 52 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥4b$">Diff. XS $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 53 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 54 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥4b$">Diff. XS $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 55 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥4b$">Diff. XS $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 56 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 57 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥4b$">Diff. XS $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 58 (aux): <a href="153521?table=Diff. XS $m(bb^{min\Delta R})$ in $≥4b$">Diff. XS $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 59 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$">Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 60 (aux): <a href="153521?table=Diff. XS $m(bb^{add})$ in $≥4b$">Diff. XS $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 61 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{add})$ in $≥4b$">Diff. XS $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 62 (aux): <a href="153521?table=Diff. XS $min\Delta R(bb)$ in $≥4b$">Diff. XS $min\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 63 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 64 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥4b$">Diff. XS $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 65 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 66 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 67 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 68 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 69 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 70 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/> <u>2D:</u><br/> Correlation matrices: <ul> <li> Data from Table 71 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥2b$">Corr. mtrx $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 72 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥3b$">Corr. mtrx $N_{b-jets}$ in $≥3b$ </a> <li> Data from Table 73 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥3b$">Corr. mtrx $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 74 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥3b$">Corr. mtrx $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 75 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 76 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 77 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 78 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 79 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 80 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 81 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥3b$">Corr. mtrx $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 82 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 83 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 84 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 85 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 86 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 87 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥3b$">Corr. mtrx $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 88 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 89 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 90 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 91 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥3b$">Corr. mtrx $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 92 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 93 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 94 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 95 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 96 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥3b$">Corr. mtrx $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 97 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 98 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 99 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 100 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 101 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 102 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 103 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥4b$">Corr. mtrx $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 104 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥4b$">Corr. mtrx $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 105 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 106 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 107 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 108 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 109 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 110 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 111 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥4b$">Corr. mtrx $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 112 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 113 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{4})$ in $≥4b$">Corr. mtrx $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 114 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 115 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 116 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 117 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 118 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 119 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥4b$">Corr. mtrx $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 120 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 121 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{4})|$ in $≥4b$">Corr. mtrx $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 122 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 123 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 124 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 125 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥4b$">Corr. mtrx $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 126 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 127 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 128 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 129 (aux): <a href="153521?table=Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 130 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 131 (aux): <a href="153521?table=Corr. mtrx $m(bb^{add})$ in $≥4b$">Corr. mtrx $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 132 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 133 (aux): <a href="153521?table=Corr. mtrx min$\Delta R(bb)$ in $≥4b$">Corr. mtrx min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 134 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 135 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥4b$">Corr. mtrx $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 136 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 137 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 138 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 139 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 140 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 141 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/>
Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.
Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.
Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.
Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.
A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
We present a measurement of the distribution of the variable $\phi^*_\eta$ for muon pairs with masses between 30 and 500 GeV, using the complete Run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb$^{-1}$ at $\sqrt{s}$ = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable $\phi^*_\eta$ probes the same physical effects as the $Z/\gamma^*$ boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the $\phi^*_\eta$ distributions for dilepton masses away from the $Z\rightarrow \ell^+\ell^-$ boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.
Table of results for the dimuon channel for $|y|<1$ region with $70 < M_{\ell\ell} < 110$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.
Table of results for the dimuon channel for $1<|y|<2$ region with $70 < M_{\ell\ell} < 110$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.
Table of results for the dimuon channel for $|y|<1$ region $30 < M_{\ell\ell} < 60$ GeV. The first quoted uncertainty is statistical and the second is the total experimental systematic uncertainty.
We present the first measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the production of an isolated photon in association with at least two $b$-quark jets. The measurements consider photons with rapidities $|y^\gamma| < 1.0$ and transverse momenta $30 < p_{T}^{\gamma} < 200$~\GeV. The $b$-quark jets are required to have $p_T^{jet}>15$ GeV and $| y^{jet}| < 1.5$. The ratio of differential production cross sections for $\gamma+2~b$-jets to $\gamma+b$-jet as a function of $p_{T}^{\gamma}$ is also presented. The results are based on the proton-antiproton collision data at $\sqrt{s}=$1.96~\TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next-to-leading order perturbative QCD calculations as well as predictions based on the $k_{T}$-factorization approach and those from the SHERPA and PYTHIA Monte Carlo event generators.
The differential GAMMA+2BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).
The differential GAMMA+BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).
The SIG(GAMMA 2BJET)/SIG(GAMMA BJET) cross section ratio in bins of PT(GAMMA).
The production of top quark-antiquark pair events in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is studied as a function of the transverse momentum and absolute value of the rapidity of the top quarks as well as of the invariant mass of the $t\bar{t}$ pair. We select events containing an isolated lepton, a large imbalance in transverse momentum, and four or more jets with at least one jet identified to originate from a $b$ quark. The data sample corresponds to 9.7 fb$^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Observed differential cross sections are consistent with standard model predictions.
The inclusive TOP TOPBAR production cross section.
The differential cross section as a function of the invariant mass of the top quark-antiquark pair, M(TOP + TOPBAR).
The differential cross section as a function of the absolute rapidity of the top quark/antiquark, ABS(YRAP(TOP/TOPBAR)).
We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of leading jet rapidity for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of second jet rapidity for events with two or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of third jet rapidity for events with three or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.