The measurement of the nonelectromagnetic forward-backward charge asymmetry in the reaction e+e−→μ+μ− at s∼34.6 GeV and in the angular region 0<|cosθ|<0.8 is reported. With a systematic error less than 1%, we observe an asymmetry of (-8.1±2.1)%. This is in agreement with the standard electroweak theory prediction of (-7.6±0.6)%. The weak-current coupling constants are also reported.
No description provided.
By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.
No description provided.
A high-statistics measurement has been made of the process e+e−→μ+μ− at s=29 GeV with the MAC detector at the SLAC storage ring PEP. The electroweak forward-backward charge asymmetry for a sample of approximately 16 000 events was measured to be Aμμ=−0.063±0.008±0.002. The ratio of the cross section to the lowest-order QED cross section was measured to be Rμμ=1.01±0.01±0.03. From these results the weak neutral axial-vector and vector couplings are determined to be gAegAμ=0.25±0.03±0.01 and gVegVμ=−0.02±0.03±0.09.
Asymmetry determined from a two parameter fit to the angular distribution proportional to R*(1 + cos(theta)**2 + (8/3)*A*cos(theta)). R is then the total ratio relative to the lowest order QED cross section and A is the forward-backward asymmetry.
No description provided.
We have performed a high-statistics measurement of Bhabha scattering and of the production of hadrons in electron-positron annihilation at PETRA energies (12 GeV<~s<~36.7 GeV). Combining the results with measurements of μ+μ− and τ+τ− production enables us to compare our results with electroweak theory. We find sin2θw=0.27±0.08. This is in good agreement with the value obtained from neutrino experiments which were carried out in entirely different kinematic regions.
No description provided.
We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
Forward backward charge asymmetry.
The angular distribution and the s dependence of the total cross section for the process e + e − → μ + μ − have been measured using the JADE detector at PETRA. After radiative corrections, a forward-backward asymmetry of −(11.8±3.8) % was observed at an average centre of mass energy of 33.5 GeV. For comparison, an asymmetry of −7.8 % is expected on the basis of the standard Glashow-Salam-Weinberg model.
Forward-backward asymmetry within the acceptnce region.
Forward-backward asymmetry from fit to angular distribution for the form 1 + cos(theta)**2 + Bcos(theta).
The processes e + e − → e + e − and μ + μ − have been studied at PETRA using the JADE detector. The data, which were collected at s -values of up to 1300 GeV 2 have been analysed in terms of an electro-weak extension of QED to obtain values for the weak vector and axial vector couplings in the lepton sector. The values obtained agree with the predictions of the standard Salam-Weinberg model and the data are further analysed in terms of this model to obtain the limits 0.10 < sin 2 ϑ w < 0.40 (68% CL). The mass of the neutral weak gauge boson is deduced to be greater than 51 GeV/ c 2 .
No description provided.
A high-statistics measurement is presented of the cross section for the process e+e−→τ+τ− at s=29 GeV from the MAC detector at PEP. A fit to the angular distribution of our sample of 10 153 events with |cosθ|<0.9 gives an asymmetry Aττ=−0.055±0.012±0.005 from which we find the product of electron and tau axial-vector weak neutral couplings gAegAτ=0.22±0.05.
Data extrapolated to full acceptance.
No description provided.
We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.
Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.