Differential cross sections for $K^-$ radiative capture in flight on the proton, leading to the $\gamma\Lambda$ and $\gamma\Sigma^0$ final states, have been measured at eight $K^-$ momenta between 514 and 750 MeV/$c$. The data were obtained with the Crystal Ball multiphoton spectrometer installed at the separated $K/\pi$ beam line C6 of the BNL Alternating Gradient Synchrotron. The results substantially improve the existing experimental data available for studying radiative decays of excited hyperon states. An exploratory theoretical analysis is performed within the Regge-plus-resonance approach. According to this analysis, the $\gamma\Sigma^0$ final state is dominated by hyperonresonance exchange and hints at an important role for a resonance in the mass region of 1700 MeV. In the $\gamma\Lambda$ final state, on the other hand, the resonant contributions account for only half the strength, and the data suggest the importance of a resonance in the mass region of 1550 MeV.
Differential cross section for the K- P --> GAMMA LAMBDA reaction at thelower beam momenta.
Differential cross section for the K- P --> GAMMA LAMBDA reaction at thehigher beam momenta.
Differential cross section for the K- P --> GAMMA SIGMA0 reaction at thelower beam momenta.
A study of the reaction pi+ + d --> p + p has been performed in the energy range of 18 - 44 MeV. Total cross sections and differential cross sections at six angles have been measured at 15 energies with an energy increment of 1 - 2 MeV. This is the most systematic data set in this energy range. No structure in the energy dependence of the cross section has been observed within the accuracy of this experiment.
No description provided.
No description provided.
No description provided.
Differential cross sections for the process pi +d to pp at seven energies in the region Tpi =280-450 MeV and in the angular range theta * approximately=4-90 degrees have been measured on the LNPI synchrocyclotron. The results include 94 new data points. The measurements have been carried out using a ten-channel hodoscope set-up. Statistical errors are between 2.5% and 7.8% depending on the scattering angle and Tpi . The data obtained indicate that there is an essential contribution from the partial wave with orbital angular momentum l=3 over the whole energy range considered. The authors also observe a noticeable contribution from the l=4 partial wave to the differential cross sections of the pi +d to pp reaction from Tpi >or=357 MeV. The total cross sections for the process pi +d to pp are also presented.
No description provided.
No description provided.
No description provided.