The production cross-section of B+ mesons is measured as a function of transverse momentum pT and rapidity y in proton--proton collisions at center-of-mass energy sqrt(s) = 7 TeV, using 2.4 fb-1 of data recorded with the ATLAS detector at the Large Hadron Collider. The differential production cross-sections, determined in the range 9
Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range |y|<0.5. The first quoted uncertainty is statistical, the second uncertainty is systematic.
Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range 0.5<|y|<1. The first quoted uncertainty is statistical, the second uncertainty is systematic.
Differential cross-section measurement for B+ production multiplied by the branching ratio to the J/PSI < MU+ MU- > K+ final state in B+ pT intervals in the B+ rapidity range 1<|y|<1.5 The first quoted uncertainty is statistical, the second uncertainty is systematic.
The production cross-sections of B mesons are measured in pp collisions at a centre-of-mass energy of 7 TeV, using data collected with the LHCb detector corresponding to a integrated luminosity of 0.36 fb-1. The B+, B0 and Bs0 mesons are reconstructed in the exclusive decays B+ -> J/psi K+, B0 -> J/psi K*0 and Bs0 -> J/psi phi, with J/psi -> mu+ mu-, K*0 -> K+ pi- and phi -> K+ K-. The differential cross-sections are measured as functions of B meson transverse momentum pT and rapidity y, in the range 0 < pT < 40 GeV/c and 2.0 < y < 4.5. The integrated cross-sections in the same pT and y ranges, including charge-conjugate states, are measured to be sigma(pp -> B+ + X) = 38.9 +- 0.3 (stat.) +- 2.5 (syst.) +- 1.3 (norm.) mub, sigma(pp -> B0 + X) = 38.1 +- 0.6 (stat.) +- 3.7 (syst.) +- 4.7 (norm.) mub, sigma(pp -> Bs0 + X) = 10.5 +- 0.2 (stat.) +- 0.8 (syst.) +- 1.0 (norm.) mub, where the third uncertainty arises from the pre-existing branching fraction measurements.
Integrated cross sections for B mesons in the defined kinematic range. The second (sys) uncertainty is the normalisation uncertainty arising from the pre-existing branching fraction measurements.
Double Differential distributions for B0 production.
Double differential distributions for B+ production.
This Letter reports a measurement of the high-mass Drell-Yan differential cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. Based on an integrated luminosity of 4.9 /fb, the differential cross-section in the Z/gamma* to e+e- channel is measured with the ATLAS detector as a function of the invariant mass, Mee, in the range 116 < Mee < 1500 GeV, for a fiducial region in which both the electron and the positron have transverse momentum pT > 25 GeV and pseudorapidity eta < 2.5. A comparison is made to various event generators and to the predictions of perturbative QCD calculations at next-to-next-to-leading order.
Measured differential cross sections as a function of the di-electron mass for DY production at the Born and dressed levels.
The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi}^{-}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega}^{-}$ in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING-B, that are used to model the particle production in pp collisions. The energy dependence of $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi^{-}}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega^{-}}$, reaching values compatible with unity for $\sqrt{s} = 7$ TeV, complement the earlier $\bar{\rm p}/{\rm p}$ measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\alpha_{\rm {J}} \approx 0.5$, which are suppressed with increasing rapidity interval ${\rm \Delta} y$. Any significant contribution of an exchange not suppressed at large ${\rm \Delta} y$ (reached at LHC energies) is disfavoured.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of pT.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of rapidity.
The LambdaBar/Lambda ratio at sqrt(s) = 0.9 TeV as a function of pT.
Measurements of the production of jets of particles in association with a Z boson in pp collisions at $\sqrt{s}$ = 7 TeV are presented, using data corresponding to an integrated luminosity of 4.6/fb collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and rapidity |y| < 4.4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.
The distribution of Inclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.
The distribution of Ratio of cross sections for successive inclusive jet multiplicities n/(n-1). The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.
The distribution of exclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.
A search has been performed for photons originating in the decay of a neutral long-lived particle, exploiting the capabilities of the ATLAS electromagnetic calorimeter to make precise measurements of the flight direction of photons, as well as the calorimeter's excellent time resolution. The search has been made in the diphoton plus missing transverse energy final state, using the full data sample of 4.8/fb of 7 TeV proton-proton collisions collected in 2011 with the ATLAS detector at the LHC. No excess is observed above the background expected from Standard Model processes. The results are used to set exclusion limits in the context of Gauge Mediated Supersymmetry Breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying with a lifetime in excess of 0.25 ns into a photon and a gravitino.
The 95% CL observed number of signal events vs lifetime for a neutralino with Lambda of 120 TeV together with the SM expectation and the predicition of the SPS8 GMSB model.
The 95% CL observed cross-section vs lifetime for a neutralino with Lambda of 120 TeV together with the SM expectation and the predicition of the SPS8 GMSB model.
The observed exclusion limits on neutralino lifetime as a function of lambda together with the SM expectation.
The inclusive jet cross-section has been measured in proton-proton collisions at sqrt(s)=2.76 TeV in a dataset corresponding to an integrated luminosity of 0.20pb-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-kt algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum pT and jet rapidity y, covering a range of 20 <= pT < 430 GeV and |y| < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at sqrt(s)=7 TeV, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity xT = 2 pT / sqrt(s), in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at sqrt(s)=2.76 TeV and sqrt(s)=7 TeV are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.
The measured inclusive jet double-differential cross section in the rapidity bin |y| < 0.3 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.
The measured inclusive jet double-differential cross section in the rapidity bin 0.3 <= |y| < 0.8 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.
The measured inclusive jet double-differential cross section in the rapidity bin 0.8 <= |y| < 1.2 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.
A search for pair-produced third generation scalar leptoquarks is presented, using proton-proton collisions at $\sqrt{s}$= 7 TeV at the LHC. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.7 fb$^{-1}$. Each leptoquark is assumed to decay to a tau lepton and a b-quark with a branching fraction equal to 100%. No statistically significant excess above the Standard Model expectation is observed. Third generation leptoquarks are therefore excluded at 95% confidence level for masses less than 534 GeV.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the electron channel assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the muon channel assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
The expected and observed 95% credibility upper limits on the cross-section of third generation leptoquark pair-production for the combined assuming a branching fraction LQ->tau b of 1.0, as a function of leptoquark mass. The 1(2) sigma errors on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section for third generation scalar leptoquarks and its corresponding theoretical uncertainty is also included.
Charm production at the LHC in pp collisions at sqrt(s)=7 TeV is studied with the LHCb detector. The decays D0 -> K- pi+, D+ -> K- pi+ pi+, D*+ -> D0(K- pi+) pi+, D_s+ -> phi(K- K+) pi+, Lambda_c+ -> p K- pi+, and their charge conjugates are analysed in a data set corresponding to an integrated luminosity of 15 nb^{-1}. Differential cross-sections dsigma/dp_T are measured for prompt production of the five charmed hadron species in bins of transverse momentum and rapidity in the region 0 < p_T < 8 GeV/c and 2.0 < y < 4.5. Theoretical predictions are compared to the measured differential cross-sections. The integrated cross-sections of the charm hadrons are computed in the above p_T-y range, and their ratios are reported. A combination of the five integrated cross-section measurements gives sigma(c\bar{c})_{p_T < 8 GeV/c, 2.0 < y < 4.5} = 1419 +/- 12 (stat) +/- 116 (syst) +/- 65 (frag) microbarn, where the uncertainties are statistical, systematic, and due to the fragmentation functions.
Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of Lambda_c+ baryons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.
Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of D0 mesons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.
Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of D+ mesons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.
This paper reports a measurement of the W+b-jets production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb-1, collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range, using jets reconstructed with the anti-k_t clustering algorithm with transverse momentum above 25 GeV and rapidity within +/- 2.1. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with next-to-leading order QCD calculations within 1.5 standard deviations.
Measured fiducial $W+b$-jets cross-sections for the combination of the electron and muon channels with statistical and systematic uncertainties and breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins. Also shown are the cross sections obtained without single-top subtraction.
Breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins.
Measured fiducial $W+b$-jets cross-section in the 1-jet region with statistical and systematic uncertainties in bins of $p_T^{b-jet}$. Also shown are the cross sections obtained without single-top subtraction. UPDATE (04 MAY 2019): units corrected from nb/GeV to fb/GeV.