The production of $D_s^-$ relative to $D_s^+$ as a function of $x_F $ with 600 GeV/c $\Sigma^-$ beam is measured in the interval $0.15 < x_F < 0.7$ by the SELEX (E781) experiment at Fermilab. The integrated charge asymmetries with 600 GeV/c $\Sigma^-$ beam ($0.53\pm0.06$) and $\pi^-$ beam ($0.06\pm0.11$) are also compared. The results show the $\Sigma^-$ beam fragments play a role in the production of $D_s^-$, as suggested by the leading quark model.
Acceptance corrected yields for the SIGMA- beam.
Production asymmetry for the SIGMA- beam.
Integrated asymmetry (with XL > 0.15) for the PI- and SIGMA- beams.
Double-spin asymmetries in the cross section of electroproduction of $\rho^0$ and $\phi$ mesons on the proton and deuteron are measured at the HERMES experiment. The photoabsorption asymmetry in exclusive $\rho^0$ electroproduction on the proton exhibits a positive tendency. This is consistent with theoretical predictions that the exchange of an object with unnatural parity contributes to exclusive $\rho^0$ electroproduction by transverse photons. The photoabsorption asymmetry on the deuteron is found to be consistent with zero. Double-spin asymmetries in $\rho^0$ and $\phi $ meson electroproduction by quasi-real photons were also found to be consistent with zero: the asymmetry in the case of the $\phi$ meson is compatible with a theoretical prediction which involves $s\bar{s}$ knockout from the nucleon.
The photoabsorption asymmetry A1 for exclusive RHO0 production.
The photoabsorption asymmetry A1 for exclusive PHI electroproduction.
The photoabsorption asymmetry A1 for electroproduction of RHO0 mesons by quasi-real photons.
Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction (Q**2 < 1 GeV**2) integrated over the jet pseudorapidity range -1 to 2.5 in the W(C=GAMMA P) range 95 to 285 GeV.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction (Q**2 < 1 GeV**2) integrated over the jet pseudorapidity range -1 to 2.5 in the W(C=GAMMA P) ranges 95 to 212, and 212 to 285 GeV.
Measured differential E+ P cross section DSIG/DET for inclusive jet photoproduction for the two Q**2 ranges integrated over the jet pseudorapidity range -1to 2.5 in the W(C=GAMMA P) range 164 to 242 GeV.
Di-jet producion is studied in collisions of quasi-real photons at e+e- centre- of-mass energies sqrt(s)ee from 189 to 209 GeV at LEP. The data were collected with the OPAL detector. Jets are reconstructed using an inclusive k_t clustering algorithm for all cross-section measurements presented. A cone jet algorithm is used in addition to study the different structure of the jets resulting from either of the algorithms. The inclusive di-jet cross-section is measured as a function of the mean transverse energy Etm(jet) of the two leading jets, and as a functiuon of the estimated fraction of the photon momentum carried by the parton entering the hard sub-process, xg, for different regions of Etm (jet). Angular distribution in di-jet events are measured and used to demonstrate the dominance of quark and gluon initiated processes in different regions of phase space. Furthermore the inclusive di-jet cross-section as a function of |eta(jet)| and |delta eta (jet)| is presented where eta(jet) is the jet pseudo-rapidity. Different regions of the xg+ -xg- -space are explored to study and control the influence of an underlying event. The results are compared to next-to-leading order perturbative QCD calculations and to the predictions of the leading order Monte Carlo generator PYTHIA.
The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are > 0.75.
The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are < 0.75.
The di-jet cross section as a function of the mean transverse energy of thedi-jet system for the full X(C=GAMMA+) and X(C=GAMMA-) region.
The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.
The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.
The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.
The width of the balance function for charged particles, $⟨\Delta \eta⟩$, as a function of normalized impact parameter $(b/b_{max})$. Error bars shown are statistical. The width of the balance function from HIJING events is shown as a band whose height reflects the statistical uncertainty. Also shown are the widths from the shuffled pseudorapidity events.
Inclusive charged hadron production, e+e- -> e+e- h+- X, is studied using 414 pb-1 of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Single particle inclusive differential cross sections are measured as a function of the particle transverse momentum, pt, and pseudo-rapidity, eta. For p_t < 1.5 GeV, the data are well described by an exponential, typical of soft hadronic processes. For higher pt, the onset of perturbative QCD processes is observed. The pi+- production cross section for pt > 5 GeV is much higher than the NLO QCD predictions.
Transverse momentum distribution for inclusive charged hadron production.
Transverse momentum distributions for charged pion and charged kaon production separately.
Transverse momentum distributions for charged pion production with different W (effective mass of the GAMMA GAMMA system) cuts.
Values of the ratios in the mid-rapidity yields of anti-Lambda/Lambda = 0.71 +/- 0.01(stat.) +/- 0.04(sys.), anti-Xi+/Xi- = 0.83 +/- 0.04(stat.) +/- 0.05 (sys.), anti-Omega+/Omega- = 0.95 +/- 0.15(stat) +/- 0.05(sys.) and K+/K- 1.092 +/- 0.023(combined) were obtained in central sqrt(s_NN) = 130 GeV Au+Au collisions using the STAR detector. The ratios indicate that a fraction of the net-baryon number from the initial system is present in the excess of hyperons over anti-hyperons at mid-rapidity. The trend in the progression of the baryon ratios, with increasing strange quark content, is similar to that observed in heavy-ion collisions at lower energies. The value of these ratios may be related to the charged kaon ratio in the framework of simple quark-counting and thermal models.
Invariant mass distributions for $\Lambda$ and Anti-$\Lambda$
Invariant mass distributions for $\Xi$ and Anti-$\Xi$
Invariant mass distributions for $\Omega$ and Anti-$\Omega$
The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing $Q^2$. The DIS contribution is sizeable over the full measured range, even down to the lowest measured $Q^2$. As expected, at higher $Q^2$ the data are found to be in agreement with previous measurements of the first moment of $g_1$. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at $Q^2 = 5$ GeV$^2$.
The value of the GDH integral, as a function of Q**2 , for the deuteron in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).
The value of the GDH integral, as a function of Q**2 , for the proton in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).
The value of the GDH integral, as a function of Q**2 , for the neutron in three W**2 regions, the total ( > 1 GeV**2), the nucleon resonance ( 1 to 4.2 GeV**2) and the DIS (4.2 to 45 GeV**2).
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $\oslash$ $\times$ 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $\theta^{LAB}_\gamma=136.2^\circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(\gamma,\pi^+ n)$. The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $\alpha +\beta=15.2\pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model)$ and $\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4$.
Energy dependence of the free-proton differential cross section.
Energy dependence of the quasi-free proton differential cross section.
Energy dependence of the triple differential cross section w.r.t. the scattered proton.
We have measured the mean charged particle multiplicities separately for bbbar, ccbar and light quark (uubar, ddbar, ssbar) initiated events produced in e+e- annihilations at LEP. The data were recorded with the OPAL detector at eleven different energies above Z0 peak, corresponding to the full statistics collected at LPE1.5 and LEP2. The difference in mean charged and particle multiplicities for bbbar and light quark events, delta_bl, measured over this energy range is consistent with an energy independent behaviour, as predicted by QCD, but is inconsistent with the prediction of a more phenomenological approach which assumes that the multiplicity accompanying the decay of a heavy quark is independent of the quark mass itself. Our results, which can be combined into the single measurement delta_bl = 3.44+-0.40(stat)+-0.89(syst) at a luminosity weighted average centre-of mass energy of 195 GeV, are also consistent with an energy independent behaviour as extrapolated from lower energy data.
Corrected mean charged particle multiplicities for the different quark quarkbar initiated events.