None
No description provided.
REAL/IMAG OF FORWARD AMPLITUDE FROM FIT TO D(SIG)/DT.
Invariant inclusive cross-sections for π+-mesons and protons from\(\bar pp\) reactions at 22.4 GeV/c are presented. The average multiplicity for the production of π+-mesons is 1.92±0.02 and for protons 0.41±0.02. Annihilation spectra have been approximated by using the difference between\(\bar pp\) and pp data. The resulting distributions have similar gross features as the total\(\bar pp\) data.
No description provided.
None
No description provided.
Axis error includes +- 7/7 contribution.
Inclusive ϱ 0 production has been investigated in p p reactions at 22.4 GeV/ c . The total cross section for ϱ 0 production is 8.1 ± 2.0 mb. The average ϱ 0 's per event is 0.17 ± 0.03. The average transverse momentum, as obtained by extrapolation of a fitted simple exponential to the p T 2 distribution, is 0.52 ± 0.12 GeV/ c . The Feynman x and c.m. rapidity distributions show ϱ 0 to be “centrally” produced.
No description provided.
No description provided.
None
THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.
REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.
No description provided.
No description provided.
No description provided.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.
The inclusive spectra for p p collisions at 22.4 GeV/ c are investigated. We show that the transverse momentum distributions resemble those in high-energy pp interactions and discuss the influence of annihilation processes on the p T 2 distributions. The invariant inclusive cross section for pions in the central region is found to be 28 ± 1 mb. A charge asymmetry is indicated by the y ∗ spectrum in the central region, the asymmetry parameter having the value 0.15 ± 0.01. Finally, we estimate the upper limit of the diffraction dissociation of the beam particle to be 3.68 −0.15 +0.45 mb.
No description provided.
No description provided.
No description provided.
A thin polyethylene target was exposed to the internal proton beam of the Serpukhov accelerator at 30, 50, and 70 GeV. The wide-angle recoil protons were registered by photoemulsion stacks and the differential cross sections of the elastic p−p scattering in the range of four-momentum transfer squared 0.0025≤|t|≤0.12 (GeV/c)2 were measured. The ratio of the real to the imaginary part of the forward nuclear amplitude α, the slope parameter of the diffraction peak b, and the total elastic cross section σel were found to be as follows: at 30 GeV, α=−0.183±0.051, b=10.61±0.27 (GeV/c)−2, σel=7.7±0.2 mb; at 50 GeV, α=−0.068±0.040, b=11.25±0.28 (GeV/c)−2, σel=7.0±0.2 mb; at 70 GeV, α=−0.104±0.065, b=11.21±0.40 (GeV/c)−2, σel=7.1±0.2 mb.
No description provided.
No description provided.
No description provided.
The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.
ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.