Results are presented on the charge exchange reaction\(\bar pp \to \bar nn\) and\(\bar np\) annihilations from bubble chamber exposures to antiproton beam of momenta 700 and 760 MeV/c. The differential cross section of\(\bar pp \to \bar nn\) shows a forward spike followed by a clear dip bump structure. Total annihilation cross section of\(\bar np\) for average\(\bar n\) momentum of 700 MeV/c has been evaluated to be 55.4±2.2 mb. The multiplicity, Feynmanx andpT2 distributions for inclusive charged pions in\(\bar pp\) and\(\bar np\) annihilations are found to be similar. The emission of charged pions from\(\bar np\) annihilations are found to be consistent with thermodynamic models with temperature ∼110 MeV.
No description provided.
The inclusive production of photons in\(\bar pp\) interactions has been studied at incident momentum of 12 GeV/c. Topological cross section has been presented and KNO distribution for\(\bar pp\) interactions has been studied. Inclusive cross section for γ production has been measured to be 149.5±8.8 mb. Bulk of these photons come from π0 decays whose cross section has been evaluated independently to be 60.4±7.9 mb. Signals of η and ω have been seen in γγ and π+π-π0 decay modes and their inclusive cross sections have been estimated to be 14.9±8.8 mb and 14.6±7.0 mb respectively. Results on average multiplicities of γ and two particle correlation parameters are presented. Neutral pions seem to be more strongly correlated than the charged pions. The inclusive distributions of the Feynmanx andpT/2 of the photons are compared with expectation from charged pions on the basis of charge independence. Energy dependence of the normalised invariant distributions has been studied. The distribution of the scaling variablez of photons ine+e− and\(\bar pp\) interactions has been compared.
.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.
No description provided.
No description provided.
SLOPE REFERS TO EXPONENTIAL FIT IN U.
We have carried out a partial-wave analysis (PWA) of three-pion systems produced in the coherent dissociation of π+ mesons on nuclear targets. The data have been analyzed for copper and lead targets at an incident π+ energy of 202.5 GeV. This PWA provides further evidence for resonant contributions to JP=1+ and 0− waves at 3π masses below 1.5 GeV, which can be plausibly identified with A1 and π′ mesons. The contribution from electromagnetic production of the A2 has also been extracted, and an estimate for Coulomb production and radiative width of the A1 has been obtained.
No description provided.
We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
No description provided.
No description provided.
No description provided.
We have studied the diffractive dissociation into di-jets of 500 GeV/c pions scattering coherently from carbon and platinum targets. Extrapolating to asymptotically high energies (where t_{min} approaches 0) we find that when the per-nucleus cross-section for this process is parameterized as $ \sigma = \sigma_0 A^{\alpha} $, $ \alpha $ has values near 1.6, the exact result depending on jet transverse momentum. These values are in agreement with those predicted by theoretical calculations of color-transparency.
Cross sections is fitted to A**POWER.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
We discuss the structure of the momentum transfer distributions for the diffractive dissociation processes p → n π + , p → Δ ++ π − and K − → K 890 ∗0 π − . In the near-threshold mass region a clear break of slope is found around t ′KK ∼ 0.25 GeV 2 for the two baryonic channels, whereas no comparable structure is seen for the mesonic system. The K → K ∗ π differential cross section exhibits a nearly exponential behaviour up to t ′ pp ∼ 0.6 GeV 2 , falling over three orders of magnitude. The slope variations and breaks are strongly correlated both to the mass region considered and to the decay angle of the fragmentation system.
No description provided.
Diffractive dissociation of neutrons and N ∗ production are studied in the reaction π − n → π − π − p at 15 GeV/ c . The reaction is dominated by a broad, low-mass diffractive enhancement in the pπ − mass. Evidence is presented for the production of at least one N ∗ resonance in the mass region 1.4–1.8 GeV. Comparison with ISR data suggest that this N ∗ resonance is produced by pomeron exchange. The N ∗ production occurs predominantly at t ′ > 0.1 GeV 2 which suggests a different coupling from the usual diffractive reactions. The non-resonant diffractive background is compared with a double-Regge model and the statistical dissociation model.
DEPENDENCE OF SLOPE OF D(SIG)/DT ON <P PI-> MASS. DATA FITTED OUT TO -TP=0.4 GEV**2, EXCEPT TO 0.2 GEV**2 FOR M < 1.2 GEV.