Date

Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 106 (2022) 072010, 2022.
Inspire Record 2087127 DOI 10.17182/hepdata.130778

The STAR Collaboration reports measurements of the transverse single-spin asymmetries, $A_N$, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include $A_N$ for inclusive jets and $A_N$ for jets containing a charged pion carrying a momentum fraction $z>0.3$ of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum $p_{T}$ and pseudorapidity $\eta$, as well as the hadron momentum fraction $z$ and momentum transverse to the jet axis $j_{T}$. These results probe higher momentum scales ($Q^{2}$ up to $\sim$ 900 GeV$^{2}$) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.

124 data tables match query

Inclusive jet asymmetries, $A_{UT}^{\sin(\phi_{S})}$, as a function of particle jet-$p_{T}$. The bars show the statistical uncertainties, while the size of the boxes represents the systematic uncertainties on $A_{UT}^{\sin(\phi_{S})}$ (vertical) and jet-$p_{T}$ (horizontal). The top panel shows results for jets that scatter forward relative to the polarized beam ($x_{F} > 0$).

Inclusive jet asymmetries, $A_{UT}^{\sin(\phi_{S})}$, as a function of particle jet-$p_{T}$. The bars show the statistical uncertainties, while the size of the boxes represents the systematic uncertainties on $A_{UT}^{\sin(\phi_{S})}$ (vertical) and jet-$p_{T}$ (horizontal). the bottom panel shows jets that scatter backward to the polarized beam ($x_{F} < 0$).

Inclusive jet asymmetries, $A_{UT}^{\sin(\phi_{S})}$, as a function of particle jet-$p_{T}$ for jets that contain a charged pion with $z > 0.3$. The blue circles are for jets containing a high-$z$ $\pi^{+}$, while red squares are for jets containing a high-$z$ $\pi^{-}$.

More…

Longitudinal Double-Spin Asymmetries for Dijet Production at Intermediate Pseudorapidity in Polarized $pp$ Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 032011, 2018.
Inspire Record 1674714 DOI 10.17182/hepdata.130944

We present the first measurements of the longitudinal double-spin asymmetry $A_{LL}$ for dijets with at least one jet reconstructed within the pseudorapidity range $0.8 < \eta < 1.8$. The dijets were measured in polarized $pp$ collisions at a center-of-mass energy $\sqrt{s}$ = 200 GeV. Values for $A_{LL}$ are determined for several distinct event topologies, defined by the jet pseudorapidities, and span a range of parton momentum fraction $x$ down to $x \sim$ 0.01. The measured asymmetries are found to be consistent with the predictions of global analyses that incorporate the results of previous RHIC measurements. They will provide new constraints on $\Delta g(x)$ in this poorly constrained region when included in future global analyses.

3 data tables match query

$A_{LL}$ as a function of parton-level invariant mass for dijets with the East barrel-endcap.

$A_{LL}$ as a function of parton-level invariant mass for dijets with the West barrel-endcap.

$A_{LL}$ as a function of parton-level invariant mass for dijets with the endcap-endcap.


Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in $p^\uparrow+p$ at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 242501, 2015.
Inspire Record 1357596 DOI 10.17182/hepdata.73282

We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in $p^\uparrow+p$ collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of five standard deviations at high transverse momenta, at high pseudorapidities eta>0.5, and for pair masses around the mass of the rho-meson. This is the first direct transversity measurement in p+p collisions. Comparing the results to data from lepton-nucleon scattering will test the universality of these spin-dependent quantities.

15 data tables match query

$p_T$ asymmetries, $\eta$ < 0, maximum opening angle of 0.2.

$<M_{inv}>$ asymmetries, $\eta$ < 0, maximum opening angle of 0.2.

$p_T$ asymmetries, $\eta$ > 0, maximum opening angle 0.2.

More…

Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

3 data tables match query

The forward-backward charge asymmetry in E+ E- --> MU+ MU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.95 and THETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be greaterthan 6 GeV. Statistical errors only are shown. Also given are the asymmetries a fter correction for the beam energy spread to correspond to the physical asymmetry at the central value of SQRT(S).

The forward-backward charge asymmetry in E+ E- --> TAU+ TAU- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.90 andTHETA(C=ACOL) < 15 degrees, and the energy of each fermion required to be great er than 6 GeV. Statistical errors only are shown. Also given are the asymmetriesafter correction for the beam energy spread to correspond to the physical asymm etry at the central value of SQRT(S).

The forward-backward charge asymmetry in E+ E- --> E+ E- production corrected to the simple kinematic acceptance region ABS(COS(THETA(P=5))) < 0.70 and THETA(C=ACOL) < 10 degrees, and the energy of each fermion required to be greater than 6 GeV. Statistical errors only are shown. Also given are the asymmetries after correction for the beam energy spread to correspond to the physical asymmetryat the central value of SQRT(S).


Precision neutral current asymmetry parameter measurements from the tau polarization at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 21 (2001) 1-21, 2001.
Inspire Record 554583 DOI 10.17182/hepdata.49765

Measurements of the tau lepton polarization and forward-backward polarization asymmetry near the Z resonance using the OPAL detector are described. The measurements are based on analyses of tau -> e nu_e nu_tau, tau -> mu nu_mu nu_tau, tau -> pi nu_tau, tau -> rho nu_tau and tau -> a1 nu_tau decays from a sample of 144810 e+e- -> tau+ tau- candidates corresponding to an integrated luminosity of 151 pb-1. Assuming that the tau lepton decays according to V-A theory, we measure the average tau polarization near Ecm = MZ to be <Ptau> = (-14.10 +/- 0.73 +/- 0.55)% and the tau polarization forward-backward asymmetry to be Afb = (-10.55 +/- 0.76 +/- 0.25)%, where the first error is statistical and the second systematic. Taking into account the small effects of the photon propagator, photon-Z interference and photonic radiative corrections, these results can be expressed in terms of the lepton neutral current asymmetry parameters: Atau = 0.1456 +/- 0.0076 +/- 0.0057, Ae = 0.1454 +/- 0.0108 +/- 0.0036. These measurements are consistent with the hypothesis of lepton universality and combine to give Al = 0.1455 +/- 0.0073. Within the context of the Standard Model this combined result corresponds to sin^2(theta)(lept,effective) = 0.23172 +/- 0.00092. Combing these results with those from the other OPAL neutral current measurements yields a value of sin^2(theta)(lept,effective) = 0.23211 +/- 0.00068.

1 data table match query

No description provided.


Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at $\sqrt{s}=510$ GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.D 105 (2022) 092011, 2022.
Inspire Record 1949588 DOI 10.17182/hepdata.114778

We report measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy $\sqrt{s}$ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 $\lesssim x \lesssim$ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the $x$ dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.

5 data tables match query

Parton jet $p_T$ vs $A_{LL}$ values with associated uncertainties.

Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology A.

Parton dijet $M_{inv}$ vs $A_{LL}$ values with associated uncertainties, for topology B.

More…

Measurement of the transverse single-spin asymmetry in $p^\uparrow+p \to W^{\pm}/Z^0$ at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 132301, 2016.
Inspire Record 1405433 DOI 10.17182/hepdata.73263

We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at $\sqrt{s} = 500~\text{GeV}$ by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse momentum dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the non-universality of the Sivers function, fundamental to our understanding of QCD.

3 data tables match query

The amplitude of the transverse single-spin asymmetry for $W^{+-}$ boson production as a function of $P_T^W$, in the |$y^W$| < 1 region, measured by STAR in proton+proton collisions at $\sqrt{s}=500$ GeV with a recorded luminosity of 25 $pb^{-1}$. The average boson's rapidity value for each $P_T^W$ bin is $y^W=0.0$.

The amplitude of the transverse single-spin asymmetry for $W^{+-}$ boson production as a function of $y^W$, in the 0.5 GeV/c < $P_T^W$ < 10 GeV/c region, measured by STAR in proton+proton collisions at $\sqrt{s}=500$ GeV with a recorded luminosity of 25 $pb^{-1}$. The average boson's transverse-momentum value for each $y^W$-bin is $P_T^W=5.3$ GeV/c.

The amplitude of the transverse single-spin asymmetry for $Z^0$ boson production, measured by STAR in proton+proton collisions at $\sqrt{s}=500$ GeV with a recorded luminosity of 25 $pb^{-1}$.


Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 072301, 2014.
Inspire Record 1292792 DOI 10.17182/hepdata.73441

We report measurements of single- and double- spin asymmetries for $W^{\pm}$ and $Z/\gamma^*$ boson production in longitudinally polarized $p+p$ collisions at $\sqrt{s} = 510$ GeV by the STAR experiment at RHIC. The asymmetries for $W^{\pm}$ were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the $W$ mass. The results are compared to theoretical predictions, constrained by recent polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range $0.05<x<0.2$.

6 data tables match query

Longitudinal single-spin asymmetry $A_L$ for W+ production as a function of lepton pseudorapidity.

Longitudinal single-spin asymmetry $A_L$ for W- production as a function of lepton pseudorapidity.

Longitudinal single-spin asymmetry $A_L$ for W+ production as a function of lepton pseudorapidity.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 13 (2000) 553-572, 2000.
Inspire Record 504989 DOI 10.17182/hepdata.49123

Cross-sections and angular distributions for hadronic and lepton pair final states in e+e- collisions at a centre-of-mass energy near 189 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a sneutrino in supersymmetric theories with R-parity violation. A search for the indirect effects of the gravitational interaction in extra dimensions on the mu+mu- and tau+tau- final states is also presented.

2 data tables match query

The forward-backward asymmetry in muon- and tau-pair production in the two sprime/s regions.

The forward-backward asymmetry in electron-pair production for cos(theta_e) <0.7.


Measurement of the Lepton Forward-Backward Asymmetry in Inclusive $B \rightarrow X_s \ell^+ \ell^-$ Decays

The Belle collaboration Sato, Y. ; Ishikawa, A. ; Yamamoto, H. ; et al.
Phys.Rev.D 93 (2016) 032008, 2016.
Inspire Record 1283183 DOI 10.17182/hepdata.64698

We report the first measurement of the lepton forward-backward asymmetry ${\cal A}_{\rm FB}$ as a function of the squared four-momentum of the dilepton system, $q^2$, for the electroweak penguin process $B \rightarrow X_s \ell^+ \ell^-$ with a sum of exclusive final states, where $\ell$ is an electron or a muon and $X_s$ is a hadronic recoil system with an $s$ quark. The results are based on a data sample containing $772\times10^6$ $B\bar{B}$ pairs recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. ${\cal A}_{\rm FB}$ for the inclusive $B \rightarrow X_s \ell^+ \ell^-$ is extrapolated from the sum of 10 exclusive $X_s$ states whose invariant mass is less than 2 GeV/$c^2$. For $q^2 > 10.2$ GeV$^2$/$c^2$, ${\cal A}_{\rm FB} < 0$ is excluded at the 2.3$\sigma$ level, where $\sigma$ is the standard deviation. For $q^2 < 4.3$ GeV$^2$/$c^2$, the result is within 1.8$\sigma$ of the Standard Model theoretical expectation.

1 data table match query

The value of ASYM(FB) obtained from the fit in each of the four Q**2 bins.