We present the first measurements of femtoscopic correlations between the K$^0_{\rm S}$ and K$^{\rm \pm}$ particles in pp collisions at $\sqrt{s}=7$ TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding solely via the $a_0(980)$ resonance. The extracted kaon source radius and correlation strength parameters for K$^0_{\rm S}$K$^{\rm -}$ are found to be equal within the experimental uncertainties to those for K$^0_{\rm S}$K$^{\rm +}$. Results of the present study are compared with those from identical-kaon femtoscopic studies also performed with pp collisions at $\sqrt{s}=7$ TeV by ALICE and with a K$^0_{\rm S}$K$^{\rm \pm}$ measurement in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. Combined with the Pb-Pb results, our pp analysis is found to be compatible with the interpretation of the $a_0(980)$ having a tetraquark structure instead of that of a diquark.
Raw K0s K+ correlation function for all kT
Raw K0s K+ correlation function for kT < 0.85 GeV/c
Raw K0s K+ correlation function for kT > 0.85 GeV/c
Comprehensive results on the production of unidentified charged particles, $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}$*(892)$^{0}$, $\rm{p}$, $\overline{\rm{p}}$, $\phi$(1020), $\Lambda$, $\overline{\Lambda}$, $\Xi^{-}$, $\overline{\Xi}^{+}$, $\Omega^{-}$ and $\overline{\Omega}^{+}$ hadrons in proton-proton (pp) collisions at $\sqrt{s}$ = 7 TeV at midrapidity ($|y| < 0.5$) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum ($p_{\rm{T}}$) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained $p_{\rm{T}}$ distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions.
Transverse momentum spectra of charged particles in V0M I multiplicity class
Transverse momentum spectra of charged particles in V0M II multiplicity class
Transverse momentum spectra of charged particles in V0M III multiplicity class
We present the measurement of a new set of jet shape observables for track-based jets in central Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV. The set of jet shapes includes the first radial moment or angularity, $g$; the momentum dispersion, $p_{\rm T}D$; and the difference between the leading and sub-leading constituent track transverse momentum, $LeSub$. These observables provide complementary information on the jet fragmentation and can constrain different aspects of the theoretical description of jet-medium interactions. The jet shapes were measured for a small resolution parameter $R = 0.2$ and were fully corrected to particle level. The observed jet shape modifications indicate that in-medium fragmentation is harder and more collimated than vacuum fragmentation as obtained by PYTHIA calculations, which were validated with the measurements of the jet shapes in proton-proton collisions at $\sqrt{s} = 7$ TeV. The comparison of the measured distributions to templates for quark and gluon-initiated jets indicates that in-medium fragmentation resembles that of quark jets in vacuum. We further argue that the observed modifications are not consistent with a totally coherent energy loss picture where the jet loses energy as a single colour charge, suggesting that the medium resolves the jet structure at the angular scales probed by our measurements ($R=0.2$). Furthermore, we observe that small-$R$ jets can help to isolate purely energy loss effects from other effects that contribute to the modifications of the jet shower in medium such as the correlated background or medium response.
Fully corrected $g$ distributions in pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$. The results are compared to PYTHIA.
Ratio of fully corrected $g$ distributions pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$ and PYTHIA 8 Tune 4C simulations. The systematic uncertainty of $g$ is propagated to the ratio.
Ratio of fully corrected $g$ distributions pp collisions at $\sqrt{s} = 7$\,TeV for $R = 0.2$ in the range of jet $p_{\mathrm{T,jet}}^{\rm ch}$ of $40$--$60$\,GeV$/c$ and PYTHIA Perugia 11 simulations. The systematic uncertainty of $g$ is propagated to the ratio.
Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.
The symmetric cumulant $sc_{2,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV
The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
The first measurement of dielectron ($\mathrm{e}^{+}\mathrm{e}^{-}$) production in central (0$-$10$\%$) Pb-Pb collisions at $\mathbf{\sqrt{{\textit{s}}_{\mathrm{NN}}}}$ = 2.76 TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range $0 < m_{\mathrm{ee}}<3.5\ \mathrm{GeV}/\textit{c}^{2}$. The ratio of data and the cocktail of hadronic contributions without vacuum $\rho^{0}$ is measured in the invariant-mass range $0.15 < m_{\mathrm{ee}}<0.7\ \mathrm{GeV}/\textit{c}^{2}$, where an excess of dielectrons is observed in other experiments, and its value is $1.40 \pm 0.28\ (\mathrm{stat.}) \pm 0.08\ (\mathrm{syst.}) \pm 0.27\ (\mathrm{cocktail})$. The dielectron spectrum measured in the invariant mass range $0 < m_{\mathrm{ee}}<1\ \mathrm{GeV}/\textit{c}^{2}$ is consistent with the predictions from two theoretical model calculations that include thermal dielectron production from both partonic and hadronic phases with in-medium broadened $\rho^{0}$ meson. The fraction of direct virtual photons over inclusive virtual photons is extracted for dielectron pairs with invariant mass $0.1 < m_{\mathrm{ee}}<0.3\ \mathrm{GeV}/\textit{c}^{2}$, and in the transverse-momentum intervals $1
Dielectron invariant-mass spectrum measured in central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. The statistical and systematic uncertainties of the data are represented by vertical bars and boxes.
Data-to-cocktail ratio. Statistical uncertainties are represented by vertical bars and systematic uncertainties by boxes.
Dielectron invariant-mass spectrum divided by the hadronic cocktail without the contribution from the vacuum $\rho^{0}$. The statistical and systematic uncertainties of data are represented by vertical bars and boxes.
The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 0-20% and 20-40% in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by ALICE. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material with the $e^{+}e^{-}$ pairs reconstructed in the central tracking system. The results of the two methods were combined and the direct photon elliptic flow was extracted in the transverse momentum range $0.9 < p_{\rm T} < 6.2$ GeV/$c$. A comparison to RHIC data shows a similar magnitude of the measured direct-photon elliptic flow. Hydrodynamic and transport model calculations are systematically lower than the data, but are found to be compatible.
Ratio V2{GAMMA,INCLUSIVE,PCM}/V2{GAMMA,INCLUSIVE,COMBINED} as function of $p_\text{T}$, collision centrality 0-20%, for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Ratio V2{GAMMA,INCLUSIVE,PHOS}/V2{GAMMA,INCLUSIVE,COMBINED} as function of $p_\text{T}$, collision centrality 20-40%, for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
V2{GAMMA,DECAY} as function of $p_\text{T}$, collision centrality 0-20%, for Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
The production yield of the $\Lambda(1520)$ baryon resonance is measured at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the $\Lambda(1520)\rightarrow {\rm pK}^{-}$ (and charge conjugate) hadronic decay channel as a function of the transverse momentum ($p_{\rm T}$) and collision centrality. The $p_{\rm T}$-integrated production rate of $\Lambda(1520)$ relative to $\Lambda$ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at LHC and the first evidence of $\Lambda(1520)$ suppression in heavy-ion collisions. The measured $\Lambda(1520)/\Lambda$ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured $p_{\rm T}$ distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances.
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 0-20% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 20-50% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes
$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 50-80% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes
The production of the $\rho$(770)${^{0}}$ meson has been measured at mid-rapidity $(|y|<0.5)$ in pp and centrality differential Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The particles have been reconstructed in the $\rho$(770)$\rightarrow\pi^{+}\pi^{-}$ decay channel in the transverse momentum ($p_{T}$) range $0.5-11$ GeV/$c$. A centrality dependent suppression of the ratio of the integrated yields $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ is observed. The ratio decreases by $\sim40\%$ from pp to central Pb-Pb collisions. A study of the $p_{T}$-differential $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ ratio reveals that the suppression occurs at low transverse momenta, $p_{T}<2$ GeV/$c$. At higher momentum, particle ratios measured in heavy-ion and pp collisions are consistent. The observed suppression is very similar to that previously measured for the $K^{*}$(892)$^{0}/K$ ratio and is consistent with EPOS3 predictions that may imply that rescattering in the hadronic phase is a dominant mechanism for the observed suppression.
Reconstructed mass of $\rho^{0}$ meson in pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.
Reconstructed mass of $\rho^{0}$ meson in 0-20$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.
Reconstructed mass of $\rho^{0}$ meson in 20-40$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.
Transverse momentum ($p_{\rm T}$) spectra of charged particles at mid-pseudorapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range $0.15 < p_{\rm T} < 50$ GeV/$c$ and $|\eta| < 0.8$ is covered. Results are presented in nine classes of collision centrality in the 0-80% range. For comparison, a pp reference at the collision energy of $\sqrt{s}$ = 5.44 TeV is obtained by interpolating between existing \pp measurements at $\sqrt{s}$ = 5.02 and 7 TeV. The nuclear modification factors in central Xe-Xe collisions and Pb-Pb collisions at a similar center-of-mass energy of $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle multiplicity density $\left\langle\rm{d}N_{\rm ch}/\rm{d}\eta\right\rangle$ show a remarkable similarity at $p_{\rm T}> 10$ GeV/$c$. The comparison of the measured $R_{\rm AA}$ values in the two colliding systems could provide insight on the path length dependence of medium-induced parton energy loss. The centrality dependence of the ratio of the average transverse momentum $\left\langle p_{\rm{T}}\right\rangle$ in Xe-Xe collisions over Pb-Pb collision at $\sqrt{s}$ = 5.02 TeV is compared to hydrodynamical model calculations.
Transverse momentum spectra of charged particles in XeXe collisions in nine centrality classes.
Interpolated pp reference spectrum and invariant cross section.
Nuclear modification factor for XeXe. Additional systematic error: 0-5 pct data: +6.1 pct -6.1 pct 5-10 pct data: +6.6 pct -6.6 pct 10-20 pct data: +7.4 pct -7.4 pct 20-30 pct data: +9.8 pct -9.8 pct 30-40 pct data: +11.5 pct -11.5 pct 40-50 pct data: +12.9 pct -12.9 pct 50-60 pct data: +13.8 pct -13.8 pct 60-70 pct data: +14.0 pct -14.0 pct 70-80 pct data: +12.9 pct -12.9 pct
The PHENIX collaboration presents first measurements of low-momentum ($0.4
Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.
Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.
Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.