The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.
The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dimuon decay channel in |y|<2.0.
The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dielectron decay channel in |y|<1.44.
The measured Z boson production cross section in pp collisions as a function of the Z boson rapidity for the dimuon decay channel.
Spectra of identified charged hadrons are measured in pPb collisions with the CMS detector at the LHC at sqrt(sNN) = 5.02 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and laboratory rapidity abs(y) < 1 are identified via their energy loss in the silicon tracker. The average pt increases with particle mass and the charged multiplicity of the event. The increase of the average pt with charged multiplicity is greater for heavier hadrons. Comparisons to Monte Carlo event generators reveal that EPOS LHC, which incorporates additional hydrodynamic evolution of the created system, is able to reproduce most of the data features, unlike HIJING and AMPT. The pt spectra and integrated yields are also compared to those measured in pp and PbPb collisions at various energies. The average transverse momentum and particle ratio measurements indicate that particle production at LHC energies is strongly correlated with event particle multiplicity.
.
.
.
Spectra of identified charged hadrons are measured in pp collisions at the LHC for sqrt(s) = 0.9, 2.76, and 7 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and for rapidities abs(y) < 1 are identified via their energy loss in the CMS silicon tracker. The average pt increases rapidly with the mass of the hadron and the event charged-particle multiplicity, independently of the center-of-mass energy. The fully corrected pt spectra and integrated yields are compared to various tunes of the PYTHIA6 and PYTHIA8 event generators.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 900 GeV.
Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) and at a centre-of-mass energy of 900 GeV.
Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 2760 GeV.
The ALICE collaboration reports the measurement of the inclusive J/psi yield as a function of charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV at the LHC. J/psi particles are detected for p_t > 0, in the rapidity interval |y| < 0.9 via decay into e+e-, and in the interval 2.5 < y < 4.0 via decay into mu+mu- pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN_{J/psi}/dy)/<dN_{J/psi}/dy> with (dN_{ch}/deta)/<dN_{ch}/deta> is observed in both rapidity ranges, where dN_{ch}/deta is measured within |eta| < 1 and p_t > 0. In the highest multiplicity interval with <dN_{ch}/deta(bin)> = 24.1, corresponding to four times the minimum bias multiplicity density, an enhancement relative to the minimum bias J/psi yield by a factor of about 5 at 2.5 < y < 4 (8 at |y| < 0.9) is observed.
The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-electron channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.
The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-muon channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.
A search for Z bosons in the mu^+mu^- decay channel has been performed in PbPb collisions at a nucleon-nucleon centre of mass energy = 2.76 TeV with the CMS detector at the LHC, in a 7.2 inverse microbarn data sample. The number of opposite-sign muon pairs observed in the 60--120 GeV/c2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of (33.8 ± 5.5 (stat) ± 4.4 (syst)) 10^{-8}, in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event in the range |yrap| < 2.0.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of rapidity, and the nuclear modification factor RAA derived by using a POWHEG proton-proton reference.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of transverse momentum, and the nuclear modificationfactor RAA derived by using a POWHEG proton-proton reference.
The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.
Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.
We have measured rapidity densities dN/dy of pions and kaons over a broad rapidity range (-0.1 < y < 3.5) for central Au+Au collisions at sqrt(snn) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+) and 242 +/- 4 +/- 19 (K-). The systematics of the strange to non--strange meson ratios are found to track the variation of the baryo-chemical potential with rapidity and energy. Landau--Carruthers hydrodynamic is found to describe the bulk transport of the pions in the longitudinal direction.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=-0.1-0.0$ for $0-5$% central
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.0-0.1$ for $0-5$% central
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.4-0.6$ for $0-5$% central
Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . NaN values means no observation.
$\frac{\mathrm{d}N}{\mathrm{d}y}$ versus $y$ for $\mathrm{p}$,$\overline{\mathrm{p}}$,$\mathrm{p}-\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . The correction for the $\Lambda$ contribution is not straight forward since BRAHMS does not measure the $\Lambda$s and PHENIX and STAR only measures the $\Lambda$s at mid-rapidity! If one assumes that the mid-rapidity estimated in the paper of $$R=\frac{\Lambda-\bar{\Lambda}}{\mathrm{p}-\bar{\mathrm{p}}} = \frac{\Lambda}{\mathrm{p}} = \frac{\bar{\Lambda}}{\bar{\mathrm{p}}} = 0.93\pm 0.11(\mathrm{stat})\pm 0.25(\mathrm{syst}) $$ and the BRAHMS "acceptance factor" of $A=0.53\pm 0.05$ which includes both that only 64% decays to protons and that some are rejected by the requirement of the track to point back to the IP. The corrected $\mathrm{p}$ ($\bar{\mathrm{p}}$ or net-$\mathrm{p}$) is then : $$\left.\frac{\mathrm{d}N}{\mathrm{d}y}\right|_{\mathrm{corrected}} = \frac{\mathrm{d}N}{\mathrm{d}y}(1/(1+RA))= \frac{\mathrm{d}N}{\mathrm{d}y}\left(0.67\pm 0.05(\mathrm{stat})\pm 0.11(\mathrm{syst})\right)$$ Which can be used at all rapidities if one believes that R is constant. The fact that net-$\mathrm{K}=\mathrm{K}^{+}-\mathrm{K}^{-}$ follows net-$\mathrm{p}$ (see fx. talk by Djamel Ouerdane at QM04), seems to indicate that the net-$\Lambda$ follow the net-$\mathrm{p}$ trend and the correction is reasonable.