Measurement of the Longitudinal Proton Structure Function at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 682 (2009) 8-22, 2009.
Inspire Record 817462 DOI 10.17182/hepdata.53740

The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q^2, the proton structure functions FL and F2 have been extracted in the region 5*10^-4 < x <0.007 and 20 < Q^2 < 130 GeV^2.

50 data tables match query

The reduced cross section at Q**2 = 24 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 32 GeV**2 for centre-of-mass energy 318.

The reduced cross section at Q**2 = 45 GeV**2 for centre-of-mass energy 318.

More…

The A dependence of the nuclear structure function ratios

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badee̵k, B. ; et al.
Nucl.Phys.B 481 (1996) 3-22, 1996.
Inspire Record 429851 DOI 10.17182/hepdata.32712

Results are presented for six nuclei from Be to Pb on the structure function ratios F 2 A / F 2 C ( x ) and their A dependence in deep inelastic muon scattering at 200 GeV incident muon energy. The data cover the kinematic range 0.01 < x < 0.8 with Q 2 ranging from 2 to 70 GeV 2 . The A dependence of nuclear structure function ratios is parametrised and compared to various models.

6 data tables match query

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.002 in the ratio.

Additional normalisation error of 0.003 in the ratio.

More…

Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Nucl.Phys.A 845 (2010) 1-32, 2010.
Inspire Record 846170 DOI 10.17182/hepdata.55369

We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.

1 data table match query

F2 measurements for a Q**2 of 1.450 GeV**2.


Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

1 data table match query

The charmed structure function F2(C=CHARM) derived from a combination of the K2PI and K4PI data. There are additional systematic uncertainties described in the text of the paper which include the 1.65 PCT luminosity uncertainty and a 9 PCT uncertainty in the charm hadronization fraction to D*+-.


Measurement of Inclusive ep Cross Sections at High Q2 at sqrt(s) = 225 and 252 GeV and of the Longitudinal Proton Structure Function FL at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baghdasaryan, S. ; et al.
Eur.Phys.J.C 74 (2014) 2814, 2014.
Inspire Record 1269731 DOI 10.17182/hepdata.62536

Inclusive ep double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of 27.6 GeV and two proton beam energies of Ep = 460 and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of 6.5 *10^{-4}<=x<= 0.65 for 35<=Q^2<=800 GeV^2 up to y = 0.85. The measurements are used together with previously published H1 data at Ep = 920 GeV and lower Q2 data at Ep = 460, 575 and 920 GeV to extract the longitudinal proton structure function FL in the region 1.5<=Q^2 <=800 GeV^2.

1 data table match query

The neutral current reduced cross section at Q^2=300 GeV^2 for a proton energy of 575 GeV.


Measurement of the proton structure function F2 at very low Q**2 at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 487 (2000) 53-73, 2000.
Inspire Record 527095 DOI 10.17182/hepdata.46969

A measurement of the proton structure function F_2(x,Q^2) is presented in the kinematic range 0.045 GeV^2 < Q^2 < 0.65 GeV^2 and 6*10^{-7} < x < 1*10^{-3}. The results were obtained using a data sample corresponding to an integrated luminosity of 3.9pb^-1 in e^+p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F_2 are typically less than 4%. At the low Q^2 values of the present measurement, the rise of F_2 at low x is slower than observed in HERA data at higher Q^2 and can be described by Regge theory with a constant logarithmic slope. The dependence of F_2 on Q^2 is stronger than at higher Q^2 values, approaching, at the lowest Q^2 values of this measurement, a region where F_2 becomes nearly proportional to Q^2.

1 data table match query

Measured values of F2 at Y = 0.600 as a function of Q**2.


A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

1 data table match query

No description provided.


Photon structure functions and azimuthal correlations of lepton pairs in tagged gamma gamma collisions.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 438 (1998) 363-378, 1998.
Inspire Record 470997 DOI 10.17182/hepdata.49546

The reactions e + e − → e + e − e + e − and e + e − → e + e − μ + μ − , in a single tag configuration, are studied at LEP with the L3 detector. The data set corresponds to an integrated luminosity of 93.7 pb −1 at s =91 GeV. Differential cross sections are measured for 1.4 GeV 2 ≤Q 2 ≤7.6 GeV 2 . The leptonic photon structure function F γ 2 and azimuthal correlations are measured for e + e − → e + e − μ + μ − . The related structure functions F γ A and F γ B , which originate from interference terms of the scattering amplitudes, are determined for the first time.

0 data tables match query

Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Simula, S. ; et al.
Phys.Rev.C 73 (2006) 045205, 2006.
Inspire Record 684005 DOI 10.17182/hepdata.12254

Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.

1 data table match query

No description provided.


Measurement of neutral and charged current cross-sections in positron proton collisions at large momentum transfer

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 13 (2000) 609-639, 2000.
Inspire Record 506029 DOI 10.17182/hepdata.43872

The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.

0 data tables match query