None
No description provided.
The energy dependence of the K L 0 -K S 0 transmission regeneration amplitudes on deuterons and neutrons in the momentum region 10–50 GeV/ c is determined. The moduli of the modified transmission amplitudes are momentum dependent. These dependences are fitted by the expression A j p − nj , where A j and n j ( j = d, n) are constants: A d =2.88 ±0.04 mb , n d =0.546±0.030, for deuterons , A n =1.97 ±0.14 mb , n n =0.530±0.019, for neutrons , The amplitude phases do not depend on the kaon momentum and are equal to ϕ d = (−130.9 ± 2.7)° ϕ n = (−132.3 ± 1.7)°. The mean value of the ratio of the total cross-section differences for K 0 and K 0 interactions with neutrons and protons is determined. The residues of the partial ω and ϱ amplitudes, which contribute to the kaon-nucleon interaction amplitudes, are also obtained.
FORWARD CROSS SECTION, AMPLITUDE AND PHASE FOR K0 REGENERATION.
(AK0 - K0) TOTAL CROSS SECTION DIFFERENCES.
None
THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.
REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.
The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.
ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.
The measurements of the transmission regeneration amplitude on hydrogen in the momentum region of 14–42 GeV/ c indicate that in accordance with the Pomeranchuk theorem its magnitude |ƒ° − ƒ °|/k decreases as energy increases and its phase is approximately constant and equal to arg (ƒ° − ƒ °) = (−118 ± 13)° .
THE REGENERATION AMPLITUDE DECREASES OVER THIS ENERGY RANGE.
None
No description provided.