Inclusive J/$\psi$ production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity ($|y| < 0.9$) in the dielectron decay channel down to zero transverse momentum $p_{\rm T}$, using a data sample corresponding to an integrated luminosity of $L_{\rm int} = 19.4 \pm$ 0.4 nb$^{-1}$. The measured $p_{\rm T}$-integrated inclusive J/$\psi$ production cross section is d$\sigma$/d$y$ = 5.64 $\pm$ 0.22 (stat.) $\pm 0.33$ (syst.) $\pm 0.12$ (lumi.) $\mu$b. The $p_{\rm T}$-differential cross section d$^{2} \sigma$/d$p_{\rm T}$d$y$ is measured in the $p_{\rm T}$ range 0$-$10 GeV/$c$ and compared with state-of-the-art perturbative QCD calculations. The J/$\psi$ $\langle p_{\rm T} \rangle$ and $\langle p_{\rm T}^{2} \rangle$ are extracted and compared with results obtained at other collision energies.
$p_{\rm T}$-integrated inclusive J/$\psi$ cross section.
$p_{\rm T}$-differential inclusive J/$\psi$ cross section.
Mean $p_{\rm T}$ square of the inclusive J/$\psi$ spectrum at 5.02 TeV.
The ALICE collaboration performed the first rapidity-differential measurement of coherent J/$\psi$ photoproduction in ultra-peripheral Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV. The J/$\psi$ is detected via its dimuon decay in the forward rapidity region ($-4.0 < y < -2.5$) for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 750 $\mu$b$^{-1}$. The cross section for coherent J/$\psi$ production is presented in six rapidity bins. The results are compared with theoretical models for coherent J/$\psi$ photoproduction. These comparisons indicate that gluon shadowing effects play a role in the photoproduction process. The ratio of $\psi'$ to J/$\psi$ coherent photoproduction cross sections was measured and found to be consistent with that measured for photoproduction off protons.
Differential cross section as a function of rapidity for coherent J/PSI photoproduction in ultra-peripheral Pb-Pb collisions.
The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5
$\Upsilon(1S)$ production cross-section in $p$Pb, as a function of $p_{T}$ and $y*$. The uncertainty is the sum in quadrature of the statistical and systematic components.
$\Upsilon(1S)$ production cross-section in Pb$p$, as a function of $p_{T}$ and $y^*$. The uncertainty is the sum in quadrature of the statistical and systematic components.
$\Upsilon(1S)$ production cross-section in $p$Pb and Pb$p$, as a function of $p_{T}$. The uncertainty is the sum in quadrature of the statistical and systematic components.
This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at \sqrt{s} = 1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36/fb. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading order parton shower Monte Carlo, (2) a fixed next-to-leading order calculation and (3) a next-to-leading order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.
Diphoton production cross section as a function of the diphoton invariant mass.
Diphoton production cross section as a function of the diphoton transverse momentum.
Diphoton production cross section as a function of the azimuthal angle difference in the two photons.
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66
Total cross section integrated up to ABS(YRAP)=2.9.
Rapiditiy distribution of E+ E- pairs in the mass range from 66 to 116 GeV.
Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $
Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.
Inclusive electrons yield versus transverse momentum in P+P collisions.
D0 yield versus transverse momentum in D+AU collisions.