We present the first measurement of pseudorapidity densities of primary charged particles near mid-rapidity in Au+Au collisions at $\sqrt{s} =$ 56 and 130 AGeV. For the most central collisions, we find the charged particle pseudorapidity density to be $dN/d\eta |_{|\eta|<1} = 408 \pm 12 {(stat)} \pm 30 {(syst)}$ at 56 AGeV and $555 \pm 12 {(stat)} \pm 35 {(syst)}$ at 130 AGeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.
No description provided.
Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $< p_{T}^{\mathrm{D^*}} < 5 $ GeV and $\mathrm{|\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.
The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.
The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.
Integrated cross section in the visible kinematic region.
The cross section of charm production in γγ collisions σ(e + e − →e + e − c c ̄ X) is measured at LEP with the L3 detector at centre-of-mass energies from 91 GeV to 183 GeV. Charmed hadrons are identified by electrons and muons from semileptonic decays. The direct process γγ→c c ̄ is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon.
Total cross section for inclusive charm production.
Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.
LOOP-OVER;.
Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.
Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
A search is performed for the production of the ψ(2S) in e+e− annihilation at a center-of-mass energy of 4.03 GeV using the BES detector operated at the Beijing Electron Positron Collider (BEPC). The kinematic features of the reconstructed ψ(2S) signal are consistent with its being produced only in association with an energetic photon resulting from initial state radiation (ISR). Limits are placed on ψ(2S) production from the decay of unknown charmonia or metastable hybrids that might be produced in e+e− annihilations at 4.03 GeV. Under the assumption that the observed cross section for ψ(2S) production is due entirely to ISR, the partial width Γee of the ψ(2S) is measured to be 2.07±0.32keV.
PSI(UNSPEC) is considered as a new 3D2 charmonium state. CHI/C(UNSPEC) is considered as any unknown charmonium state. EXOTIC is considered as a metastable hybrid.
We present a study of the inclusive ω and η′ production based on 3.1 million hadronic Z decays recorded with the L3 detector at LEP during 1991–1994. The production rates per hadronic Z decay have been measured to be 1.17±0.17 ω mesons and 0.25±0.04 η′ mesons. The production rates and the differential cross sections have been compared with predictions of the JETSET and the HERWIG Monte Carlo models. We have observed that the differential cross sections can be described by an analytical quantum chromodynamics calculation.
Final production rates per hadronic Z0 decay.
Corrected production rates from the omega --> pi+ pi- p0 decay mode. Extrapolation to full x range.
Corrected production rates from the etaprime --> pi+ pi- eta decay mode. Extrapolation to full x range.
We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.
The inclusive production of η mesons has been studied using 1.6 million hadronic Z decays collected with the L3 detector. The η multiplicity per event, the multiplicity for two-jet and three-jet events separately, and the multiplicity in each jet have been measured and compared with the predictions of different Monte Carlo programs. The momentum spectra of η in each jet have also been measured. We observe that the measured η momentum spectrum in quark-enriched jets agrees well with the Monte Carlo prediction while in gluon-enriched jets it is harder than that predicted by the Monte Carlo models.
No description provided.
No description provided.
No description provided.
The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.
No description provided.
No description provided.
No description provided.