Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Study of the eta(c) (s wave singlet) state of charmonium formed in anti-p p annihilations and a search for the eta(c)-prime (s wave doublet)

The E760 collaboration Armstrong, T.A. ; Bettoni, D. ; Bharadwaj, V. ; et al.
Phys.Rev.D 52 (1995) 4839-4854, 1995.
Inspire Record 395314 DOI 10.17182/hepdata.42381

The E760 Collaboration performed an experiment in the Antiproton Accumulator at Fermilab to study the two photon decay of the ηc(1 1S0) charmonium state formed in p¯p annihilations. This resulted in a new measurement of the mass Mηc=2988.3−3.1+3.3 MeV/c2 and of the product B(ηc→p¯p)×Γ(ηc→γγ) =(8.1−2.0+2.9) eV. We performed a search for the process p¯p→ηc′(2 1S0)→γγ over a limited range of center-of-mass energies. Since no signal was observed, we derived upper limits on the product of branching ratios B(ηc′→p¯p)×B(ηc′→γγ) in the center-of-mass energy range 3584≤ √s ≤3624 MeV. We observed no signal for the nonresonant process p¯+p→γ+γ and obtain upper limits.

2 data tables

No description provided.

No description provided.