We report a measurement of the $\pi^-$ photoproduction beam asymmetry for the reaction $\vec{\gamma} p \rightarrow \pi^- \Delta^{++}$ using data from the GlueX experiment in the photon beam energy range 8.2--8.8 GeV. The asymmetry $\Sigma$ is measured as a function of four-momentum transfer $t$ to the $\Delta^{++}$ and compared to phenomenological models. We find that $\Sigma$ varies as a function of $t$: negative at smaller values and positive at higher values of $|t|$. The reaction can be described theoretically by $t$-channel particle exchange requiring pseudoscalar, vector, and tensor intermediaries. In particular, this reaction requires charge exchange, allowing us to probe pion exchange and the significance of higher-order corrections to one-pion exchange at low momentum transfer. Constraining production mechanisms of conventional mesons may aid in the search for and study of unconventional mesons. This is the first measurement of the process at this energy.
Beam asymmetry $\Sigma$ vs. $|t|$ compared to theoretical predictions. The uncertainty on $|t|$ is the rms of values in the $\Delta^{++}$ signal region. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 1.5% on the magnitude of $\Sigma$.
We report measurements of the photon beam asymmetry $\Sigma$ for the reaction $\vec{\gamma} p\to K^+\Sigma^0$(1193) using the GlueX spectrometer in Hall D at Jefferson Lab. Data were collected using a linearly polarized photon beam in the energy range of 8.2-8.8 GeV incident on a liquid hydrogen target. The beam asymmetry $\Sigma$ was measured as a function of the Mandelstam variable $t$, and a single value of $\Sigma$ was extracted for events produced in the $u$-channel. These are the first exclusive measurements of the photon beam asymmetry $\Sigma$ for the reaction in this energy range. For the $t$-channel, the measured beam asymmetry is close to unity over the $t$-range studied, $-t=(0.1-1.4)~$(GeV/$c$)$^{2}$, with an average value of $\Sigma = 1.00\pm 0.05$. This agrees with theoretical models that describe the reaction via the natural-parity exchange of the $K^{*}$(892) Regge trajectory. A value of $\Sigma = 0.41 \pm 0.09$ is obtained for the $u$-channel integrated up to $-u=2.0$~(GeV/$c$)$^{2}$.
Beam asymmetry $\Sigma$ for the low $-t$ region where the horizontal error bars indicate the rms widths of the $t$ bin. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.
Average beam asymmetry $\Sigma$ for the low $-u$ region where the uncertainty on $\Sigma$ is the statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 2.1% on the magnitude of $\Sigma$.
We report on the measurement of the beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\rightarrow p\eta$ and $\vec{\gamma}p \rightarrow p\eta^{\prime}$ from the GlueX experiment, using an 8.2--8.8 GeV linearly polarized tagged photon beam incident on a liquid hydrogen target in Hall D at Jefferson Lab. These measurements are made as a function of momentum transfer $-t$, with significantly higher statistical precision than our earlier $\eta$ measurements, and are the first measurements of $\eta^{\prime}$ in this energy range. We compare the results to theoretical predictions based on $t$--channel quasi-particle exchange. We also compare the ratio of $\Sigma_{\eta}$ to $\Sigma_{\eta^{\prime}}$ to these models, as this ratio is predicted to be sensitive to the amount of $s\bar{s}$ exchange in the production. We find that photoproduction of both $\eta$ and $\eta^{\prime}$ is dominated by natural parity exchange with little dependence on $-t$.
Values and errors for the photon beam asymmetry $\Sigma_{\eta}$ for the reaction $\gamma p \rightarrow \eta p$ with $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.
Values and errors for the photon beam asymmetry $\Sigma_{\eta\prime}$ for the reaction $\gamma p \rightarrow \eta^{\prime} p$ with $\eta^{\prime}\rightarrow \eta\pi^{+}\pi^{-}$ and the $\eta\rightarrow\gamma\gamma$. For the binning in $t$, we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature. Not reported here is the $2.1\%$ relative uncertainty due to the determination of the polarization of the photon beam.
Values and errors for the ratio of photon beam asymmetries $\Sigma_{\eta\prime}/\Sigma_{\eta}$ for the reported reactions. To form the ratio, the $\eta$ analysis is done with the same binning in $t$ as the $\eta^\prime$ analysis, and for each bin we report the range of the data, the event-weighted mean of all $t$ values, and the RMS of that distribution. For $\Sigma_{\eta\prime}/\Sigma_{\eta}$, we report the value, statistical error, and systematic error. The total error is the sum of the previous two in quadrature.}
We report on the measurement of the $\gamma p \rightarrow J/\psi p$ cross section from $E_\gamma = 11.8$ GeV down to the threshold at $8.2$ GeV using a tagged photon beam with the GlueX experiment. We find the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section $d\sigma /dt$ has an exponential slope of $1.67 \pm 0.39$ GeV$^{-2}$ at $10.7$ GeV average energy. The LHCb pentaquark candidates $P_c^+$ can be produced in the $s$-channel of this reaction. We see no evidence for them and set model-dependent upper limits on their branching fractions $\mathcal{B}(P_c^+ \rightarrow J/\psi p)$ and cross sections $\sigma(\gamma p \to P_c^+)\times\mathcal{B}(P_c^+ \to J/\psi p) $.
$\gamma p \rightarrow J/\psi p$ total cross-sections, statistical and systematic errors of the individual points in bins of beam energy. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.
$\gamma p \rightarrow J/\psi p$ differential cross-sections, statistical and systematic errors of the individual points in bins of $-(t-t_{min})$. There is an additional fully correlated systematic uncertainty of 26.7% on the total cross section, not included here.
This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb$^{-1}$. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$. The measurement covers photon transverse energies $25 < E_\textrm{T}^\gamma<400$ GeV and $25 < E_\textrm{T}^\gamma<350$ GeV respectively for the two $|\eta^\gamma|$ regions. For each jet flavour, the ratio of the cross sections in the two $|\eta^\gamma|$ regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central $\gamma+b$ measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.
Measured fiducial integrated $\gamma+b$ and $\gamma+c$ cross sections for $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$.
Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $|\eta^\gamma|<1.37$.
Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $1.56<|\eta^\gamma|<2.37$.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
Parity non-conserving (PNC) optical rotation has been measured by laser polarimetry in the 648 nm magnetic dipole transition (6p$^{3}J$=$\frac{3}{2}\rightarrow$6p$^{3}J'=\frac{5}{2}$) in atomic bismuth. The experiment involves finding the small differences in rotation between selected frequency points in the vicinity of the F = 6 $\rightarrow$ F' = 7 hyperfine component. Faraday rotation, which can be distinguished from PNC rotation by its wavelength dependence, is used in locking the laser frequency and calibrating the PNC' effect. Results obtained over a six-year period are summarised; a detailed discussion of error sources and associated tests is given. The final result for the PNC parameter of the 648 nm transition is R = (-9.3 $\pm$ 1.4)X10$^{-8}$. This is in agreement with the measurements of Birich et a/ but not with those of Barkov and Zolotorev. It is also consistent with the standard model of the electroweak interaction, but the uncertainty in the atomic theory is now the limiting factor in the comparison.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
The cross section for the reaction 2H(γ, p)n has been measured at laboratory photon energies Eγ = 133−158 MeV and c.m. angles between 30° and 150°. The reaction was induced by a tagged bremsstrahlung photon beam incident on a liquid deuterium target. The uncertainty in the absolute cross sections is ⩽ 5%. There is now reasonable agreement between recent measurements in this energy region and the overall data set now defines the cross section sufficiently well to provide a test of current models of the reaction.
No description provided.
No description provided.
The results of tagged photon measurements of the 16O(γ, pn) and 16O(γ, pp) reactions, carried out with photons of energies of 80–131 MeV, are presented. Missing energy spectra for both reactions, with an energy resolution of 7 MeV have been obtained. The 16O(γ, pn) missing energy spectrum is very similar to that recently measured for the 12C(γ, pN) reaction. In both cases the recoil momentum distributions are quantitavely described by a quasideuteron mechanism. Using normalisation factors based on this mechanism the average cross section for the 16O(γ, pn) reaction, for nucleons ejected from the 1p shell, is 510 ± 95 μb. The corresponding cross section for the 16O(γ, pp) reaction is 10.0 ± 3.0 μb.
PROPOSED THAT THE REACTION IS DUE TO A QUASI DEUTERON MECHANISM AND P N PAIRS E]ECT FROM THE 1P SHELL.
PROPOSED THAT THE REACTION IS DUE TO A QUASI DEUTERON MECHANISM AND P N PAIRS E]ECT FROM THE 1P SHELL.