The single diffraction dissociation process pp → (p π + π − )p has been studied at the CERN ISR at √ s = 45 GeV and 0.1 < − t < 0.6 GeV 2 . The reaction is dominated by nucleon resonance production: pp → pN (1520) and pp → pN(1688) with cross-sections (0.25 ± 0.08) mb and (0.56 ± 0.19) mb respectively.
We compare the differential cross sections of high-mass muon pair production on deuterium and tungsten by incident negative pions of 140 and 286 GeV. We find an indication of a nuclear effect on the nucleon quark distributions comparable in magnitude to what is observed in muon-iron deep inelastic scattering, whereas the pion-quark distribution is unaffected, compatibly with QCD factorization.
No description provided.
No description provided.
No description provided.
We present a measurement of the production of muon pairs in 194 GeV/c π−-tungsten interactions. A sample of 155,000 events with mass higher than 4.07 GeV/c2 has been used to determine the differential cross-section as a function of the scaling variables\(\sqrt \tau\) andxF.
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.21-0.24. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.24-0.27. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
The cross section ${\rm d}^2\sigma/{\rm d}\sqrt{\tau}{\rm d}x$ integrated over each $\sqrt{\tau}$-$x_F$ cell as a function of $x_F$ for $\sqrt{\tau}$ = 0.27-0.30. The $\Upsilon$ region has been excluded. The integrated luminosity is $L = (8.58 \pm 0.53)\times 10^{37}$ [cm$^2$/W nucleus]$^{-1}$. Note that these data have been re-analysed by the NA10 experimenters using a better estimate of Fermi motion effects (see Tables 11-19 of this record).
We have measured the relative cross sections for muon pair production by 280 GeV/ c negative pions on three different targets: carbon, copper, and tungsten. The value of α obtained from the parametrization σ = constant × A α is 0.94 ± 0.02 ± 0.02, whereas the parametrization σ≈σ 0 ( Z A ) A α′ , where σ 0 ( Z A ) is given by the Drell-Yan model, leads to α ′ = 0.97 ±0.02±0.02. This last result is in agreement with the quark additivity rule which is inherent in the Drell-Yan model, no dependence is observed on the transverse momentum of the muon pair.
PARAMETRISATION OF CROSS-SECTION IS SIG=CONST.*A**POWER.
PARAMETRISATION OF CROSS-SECTION IS SIG=SIG0(Z/A)*A**POWER WHERE SIG0(Z/A) IS GIVEN BY DRELL-YAN MODEL.
We present a study of\(B\bar B\) meson pair production inπ− interactions at 140, 194 and 286 GeV incident pion energy. At 286 GeV, where we have the best statistics, we find a model-dependent\(B\bar B\) production cross-section\(\sigma _{BB}= 14_{ - 6}^{ + 7} nb/nucleon\).
We have determined the coherent KS regeneration amplitudes on various nuclei, from 20 to 140 GeV/c, using a particularly systematics-free technique. Our results are well represented by |(f−f¯)k|=2.23A0.758p−0.614 mb. This p dependence corresponds to an effective "nuclear" intercept ``αω(0)''=0.386±0.009, whereas the elementary value is αω(0)=0.44±0.01. Comparisons are made with data below 25 GeV/c, and with optical-model predictions. The latter work only if "αω(0)" is postulated to hold for the elementary amplitudes.
No description provided.
Precise measurements att=0 of the KLp→KSp amplitude (modulus and phase) were made. Over 50000 Kπ2 decays along with normalizing Kμ3 events were detected behind a 7.2-m-long liquid-hydrogen regenerator. The momentum dependence of the modulus and phase are presented, and the results are combined with those of other experiments to extract the relevant parameters of ω exchange.
RESULTS USING ETA+- = 2.15E-3.
RESULTS USING ETA+- = 2.27E-3.
A measurement of the coherent regeneration amplitude in carbon in the energy range 30-130 GeV is presented. The results are consistent with the dominance of this process by ω exchange, and a precise value of the intercept of the ω trajectory is obtained: αω(0)=0.390±0.014.
No description provided.
We present a study of events with three muons in the final state, produced in π − -tungsten interactions at 194 GeV/ c . Trimuons can be attributed to B-meson pair production, and this allows us to set (model-dependent) upper limits for the corresponding cross section. Assuming a correlated central production model, we obtain the limit of 1.5 nb per nucleon at the 95% confidence level.
With a sample of about 2000( γ + γ ′+ γ ″) events observed in π-W interactions at 286GeV/ c , the ratio ( γ ′+ γ ″)/ γ =0.51±0.07, the branching ratio times the inclusive total cross section Bσ =(386±17±85) pb per W nucleus, as well as the differential cross sections in χ F and p T have been measured. These results are compared with previous data obtained with the same apparatus at a lower beam momentum (194 GeV/ c ). Both data sets are compared with a theoretical calculation (“duality model”) which also allows one to extract the shape parameter β g of the gluon distribution in the pion. β g is found to be 2.3 −0.3 +0.4 (stat.) −0.5 +0.1 (syst.).