Showing 10 of 16 results
There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of data at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.
$v_2$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination
$v_2$ vs $p_T$, d+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination
$v_2$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination
$v_3$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination
$v_3$ vs $p_T$, d+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination
$v_3$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination
$v_2$ vs $p_T$, p+Au at 200 GeV, 0-5% central, FVTXS-CNT-FVTXN detector combination
$v_2$ vs $p_T$, d+Au at 200 GeV, 0-5% central, FVTXS-CNT-FVTXN detector combination
$v_2$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, FVTXS-CNT-FVTXN detector combination
$v_2$ ratio vs $p_T$, p/d/3He+Au at 200 GeV, 0-5% central
$v_3$ vs $p_T$, p+Au at 200 GeV, 0-5% central, FVTXS-CNT-FVTXN detector combination
$v_3$ vs $p_T$, d+Au at 200 GeV, 0-5% central, FVTXS-CNT-FVTXN detector combination
$v_3$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, FVTXS-CNT-FVTXN detector combination
$c_2$ vs $\eta$, p+Au at 200 GeV, 0-5% central
$c_2$ vs $\eta$, d+Au at 200 GeV, 0-5% central
$c_2$ vs $\eta$, 3He+Au at 200 GeV, 0-5% central
$c_3$ vs $\eta$, p+Au at 200 GeV, 0-5% central
$c_3$ vs $\eta$, d+Au at 200 GeV, 0-5% central
$c_3$ vs $\eta$, 3He+Au at 200 GeV, 0-5% central
$C(\Delta\phi)$ vs $\Delta\phi$, p+p at 200 GeV, minimum bias, BBCS-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, d+Au at 200 GeV, 0-5% central, BBCS-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, 3He+Au at 200 GeV, 0-5% central, BBCS-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+p at 200 GeV, minimum bias, BBCS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, d+Au at 200 GeV, 0-5% central, BBCS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, 3He+Au at 200 GeV, 0-5% central, BBCS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+p at 200 GeV, minimum bias, FVTXS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+Au at 200 GeV, 0-5% central, FVTXS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, d+Au at 200 GeV, 0-5% central, FVTXS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, 3He+Au at 200 GeV, 0-5% central, FVTXS-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+p at 200 GeV, minimum bias, CNT-BBCS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+Au at 200 GeV, 0-5% central, CNT-BBCS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, d+Au at 200 GeV, 0-5% central, CNT-BBCS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, 3He+Au at 200 GeV, 0-5% central, CNT-BBCS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+p at 200 GeV, minimum bias, CNT-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+Au at 200 GeV, 0-5% central, CNT-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, d+Au at 200 GeV, 0-5% central, CNT-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, 3He+Au at 200 GeV, 0-5% central, CNT-FVTXS correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+p at 200 GeV, minimum bias, CNT-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, p+Au at 200 GeV, 0-5% central, CNT-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, d+Au at 200 GeV, 0-5% central, CNT-FVTXN correlation
$C(\Delta\phi)$ vs $\Delta\phi$, 3He+Au at 200 GeV, 0-5% central, CNT-FVTXN correlation
$c_n$ vs detector combination, p+p at 200 GeV, Minimum Bias
$c_n$ vs $p_T$, p+p at 200 GeV, Minimum Bias, BBCS-CNT detector combination
$c_n$ vs $p_T$, p+p at 200 GeV, Minimum Bias, FVTXS-CNT detector combination
$c_n$ vs $p_T$, p+p at 200 GeV, Minimum Bias, FVTXN-CNT detector combination
$c_n$ vs detector combination, p+Au at 200 GeV, 0-5% central
$c_n$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-CNT detector combination
$c_n$ vs $p_T$, p+Au at 200 GeV, 0-5% central, FVTXS-CNT detector combination
$c_n$ vs $p_T$, p+Au at 200 GeV, 0-5% central, FVTXN-CNT detector combination
$c_n$ vs detector combination, p+Au at 200 GeV, 0-5% central
$c_n$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-CNT detector combination
$c_n$ vs $p_T$, p+Au at 200 GeV, 0-5% central, FVTXS-CNT detector combination
$c_n$ vs $p_T$, p+Au at 200 GeV, 0-5% central, FVTXN-CNT detector combination
$c_n$ vs detector combination, p+Au at 200 GeV, 0-5% central
$c_n$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, BBCS-CNT detector combination
$c_n$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, FVTXS-CNT detector combination
$c_n$ vs $p_T$, 3He+Au at 200 GeV, 0-5% central, FVTXN-CNT detector combination
Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V2{SP} over V2{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V3{SP} over V3{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V4{SP} over V4{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V5{SP} over V5{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V6{SP} over V6{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with A Multiphase Transport Model and fit with a Blast Wave model.
The difference in $v_{2}$ between particles (X) and their corresponding antiparticles $\bar{X}$ (see legend) as a function of $\sqrt{s_{NN}}$ for 10%-40% central Au + Au collisions. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.
The difference in $v_{2}$ between protons and antiprotons as a function of $\sqrt{s_{NN}}$ for 0%-10%, 10%-40% and 40%-80% central Au + Au collisions. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.
The relative difference. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.
The $v_{2}$ difference between protons and antiprotons (and between $\pi^{+}$ and $pi^{-}$) for 10%-40% centrality Au+Au collisions at 7.7, 11.5, 14.5, and 19.6 GeV. The $v_{2}{BBC} results were slightly shifted horizontally.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
We present high precision measurements of elliptic flow near midrapidity ($|y|<1.0$) for multi-strange hadrons and $\phi$ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy $\sqrt{s_{NN}}=$ 200 GeV. We observe that the transverse momentum dependence of $\phi$ and $\Omega$ $v_{2}$ is similar to that of $\pi$ and $p$, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30$\%$ and 30-80$\%$ collision centrality. There is an indication of the breakdown of previously observed mass ordering between $\phi$ and proton $v_{2}$ at low transverse momentum in the 0-30$\%$ centrality range, possibly indicating late hadronic interactions affecting the proton $v_{2}$.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2\{2\}$ and $v_2\{4\}$, for charged hadrons from U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV and Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2\{2\}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2\{2\}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.
The distribution of observed charge asymmetry from STAR data.
Pion $v_2${2} as a function of observed charge asymmetry.
$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.
The slope parameter r as a function of centrality for collision energy of 200 GeV.
The slope parameter r as a function of centrality for collision energy of 62.4 GeV.
The slope parameter r as a function of centrality for collision energy of 39 GeV.
The slope parameter r as a function of centrality for collision energy of 27 GeV.
The slope parameter r as a function of centrality for collision energy of 19.6 GeV.
The slope parameter r as a function of centrality for collision energy of 11.5 GeV.
The slope parameter r as a function of centrality for collision energy of 7.7 GeV.
Correlations between the elliptic or triangular flow coefficients $v_m$ ($m$=2 or 3) and other flow harmonics $v_n$ ($n$=2 to 5) are measured using $\sqrt{s_{NN}}=2.76$ TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated lumonisity of 7 $\mu$b$^{-1}$. The $v_m$-$v_n$ correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, $v_3$ is found to be anticorrelated with $v_2$ and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities $\epsilon_2$ and $\epsilon_3$. On the other hand, it is observed that $v_4$ increases strongly with $v_2$, and $v_5$ increases strongly with both $v_2$ and $v_3$. The trend and strength of the $v_m$-$v_n$ correlations for $n$=4 and 5 are found to disagree with $\epsilon_m$-$\epsilon_n$ correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to $v_n$ and a nonlinear term that is a function of $v_2^2$ or of $v_2v_3$, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to $v_4$ and $v_5$ are found to be consistent with previously measured event-plane correlations.
Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 2 < $\Delta\eta$ < 4.5 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 2 < $\Delta\eta$ < 4.5 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.
The $\Delta\eta$ dependence of the near-side (|$\Delta\phi$| < $\pi/3$) correlated yield. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the away-side (|$\Delta\phi - \pi$| < $\pi/3$) correlated yield. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the ratio of the near- to away-side correlated yields in d+Au collisions. Positive(negative) $\eta$ corresponds to d(Au)-going direction. Only high ZDC-Au activity data are shown.
The $\Delta\eta$ dependence of the second harmonic Fourier coefficient, V2, in low ZDC-Au activity d+Au collisions.
The $\Delta\eta$ dependence of the second harmonic Fourier coefficient, V2, in high ZDC-Au activity d+Au collisions.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V1 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V1. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V2 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be 10% on V2. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selections is by FTPC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-Au. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from FTPC-d. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Fourier coefficient V3 versus the measured mid-rapidity charged particle $dN_{ch}/d\eta$. Event activity selection is by ZDC-Au. Trigger particles are from TPC, and associated particles from TPC. Systematic uncertainties are estimated to be smaller than statistical errors for V3. Errors shown are the quadratic sum of statistical and systematic errors.
Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.
The distributions of $N_{ch}^{rec}$ for MB and MB+HMT after applying an event-by-event weight, errors are statistical.
The distributions of $E_{T}^{Pb}$ [GeV] for MB and MB+HMT after applying an event-by-event weight, errors are statistical.
Per-trigger yield in 2D, $Y$($\Delta\phi$,$\Delta\eta$), for events with $E_{T}^{Pb} <$ 10 GeV and $N_{ch}^{rec} \geq$ 200 and recoil-subtracted per-trigger yield, $Y^{sub}$($\Delta\phi$,$\Delta\eta$) for events with $N_{ch}^{rec} \geq$ 200. Errors are statistical.
$v_{2,2}^{unsub}$ and $v_{2,2}$ as a function of $\Delta\eta$ calculated from the 2-D per-trigger yields in figure 4(a) and 4(b), respectively.
$v_{3,3}^{unsub}$ and $v_{3,3}$ as a function of $\Delta\eta$ calculated from the 2-D per-trigger yields in figure 4(a) and 4(b), respectively.
$v_{4,4}^{unsub}$ and $v_{4,4}$ as a function of $\Delta\eta$ calculated from the 2-D per-trigger yields in figure 4(a) and 4(b), respectively.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
The per-trigger yield distributions $Y^{corr}(\Delta\phi)$ and $Y^{recoil}(\Delta\phi)$ for events with $N_{ch}^{rec} \geq$ 220 in the long-range region $|\Delta\eta| >$ 2.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the near-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
Integrated per-trigger yield, $Y_{int}$, on the away-side as a function of $p_{T}^{a}$ for 1 $< p_{T}^{b} <$ 3 GeV.
The integrated per-trigger yield, Y_{int}, on the near-side, the away-side and their difference and Y_{int} from the recoil as a function of event activity. Errors are statistical.
The integrated per-trigger yield, Y_{int}, on the near-side, the away-side and their difference and Y_{int} from the recoil as a function of event activity. Errors are statistical.
The Fourier coefficients $v_{n}$ as a function of $p_{T}^{a}$ extracted from the correlation functions, before and after the subtraction of the recoil component.
The Fourier coefficients $v_{n}$ as a function of $p_{T}^{a}$ extracted from the correlation functions, before and after the subtraction of the recoil component.
The Fourier coefficients $v_{n}$ as a function of $p_{T}^{a}$ extracted from the correlation functions, before and after the subtraction of the recoil component.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
$v_{2}$, $v_{3}$, $v_{4}$ and $v_{5}$ as a function of $p_T^a$ for 1 $< p_{T}^{b} <$ 3 GeV for different $N_{ch}^{rec}$ intervals.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{2}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The values of factorization variable $r_{3}$ defined by Eq.(11) before and after the subtraction of the recoil component. Errors are total experimental uncertainties.
The centrality dependence of $v_{2}$ as a function of $N_{ch}^{rec}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{3}$ as a function of $N_{ch}^{rec}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{4}$ as a function of $N_{ch}^{rec}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{2}$ as a function of $E_{T}^{Pb}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{3}$ as a function of $E_{T}^{Pb}$. Values from before and after the recoil subtraction are included.
The centrality dependence of $v_{4}$ as a function of $E_{T}^{Pb}$. Values from before and after the recoil subtraction are included.
The $v_{2}$ as a function of $E_{T}^{Pb}$ obtained indirectly by mapping from the $N_{ch}^{rec}-dependence of $v_{2}$ using the correlation data shown in Fig. 2(b).
The $v_{3}$ as a function of $E_{T}^{Pb}$ obtained indirectly by mapping from the $N_{ch}^{rec}-dependence of $v_{3}$ using the correlation data shown in Fig. 2(b).
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC before recoil subtraction, $v_{1,1}^{unsub}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic of 2PC after recoil subtraction, $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic $v_1$ obtained using factorization from $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic $v_1$ obtained using factorization from $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
The first-order harmonic $v_1$ obtained using factorization from $v_{1,1}$, as a function of $p_T^a$ for different $p_T^b$ ranges for events with $N_{ch}^{rec} \geq$ 220.
$v_{2}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method.
$v_{2}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method, after the scaling.
$v_{3}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method.
$v_{3}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method, after the scaling.
$v_{4}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method.
$v_{4}$ for Pb+Pb collisions in 55-60% centrality interval obtained using an EP method, after the scaling.
Correlation between $E_{T}^{FCal}$ and $N_{ch}^{rec}$ for MB events (without weighting) and MB+HMT events (with weighting), errors are statistical.
ATLAS measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV are shown using a dataset of approximately 7 $\mu$b$^{-1}$ collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta $0.5<p_T<20$ GeV and in the pseudorapidity range $|\eta|<2.5$. The anisotropy is characterized by the Fourier coefficients, $v_n$, of the charged-particle azimuthal angle distribution for n = 2-4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the $v_n$ coefficients are presented. The elliptic flow, $v_2$, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, $v_3$ and $v_4$, are determined with two- and four-particle cumulants. Flow harmonics $v_n$ measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to $v_n$ measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 0-2%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 0-2%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the six-particle cumulats as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic measured with the eight-particle cumulats as a function of transverse momentum in centrality bin 60-80%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 40-50%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 10-20%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 20-30%.
The second flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 30-40%.
The triangular flow harmonic measured with the two-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The triangular flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 0-25%.
The triangular flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The triangular flow harmonic measured with the two-particle cumulats as a function of transverse momentum in centrality bin 25-60%.
The triangular flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 25-60%.
The triangular flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 25-60%.
The quadrangular flow harmonic measured with the two-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The quadrangular flow harmonic measured with the Event Plane method as a function of transverse momentum in centrality bin 0-25%.
The quadrangular flow harmonic measured with the four-particle cumulats as a function of transverse momentum in centrality bin 0-25%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 0-2%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the two-particle cumulants as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 0-2%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the six-particle cumulats as a function of pseudorapidity in centrality bin 60-80%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 2-5%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 5-10%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 10-15%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 15-20%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 20-25%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 25-30%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 30-35%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 35-40%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 40-45%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 45-50%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 50-55%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 55-60%.
The second flow harmonic measured with the eight-particle cumulats as a function of pseudorapidity in centrality bin 60-80%.
The triangular flow harmonic measured with the two-particle cumulats as a function of pseudorapidity in centrality bin 0-60%.
The triangular flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 0-60%.
The triangular flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 0-60%.
The quadrangular flow harmonic measured with the two-particle cumulats as a function of pseudorapidity in centrality bin 0-25%.
The quadrangular flow harmonic measured with the Event Plane method as a function of pseudorapidity in centrality bin 0-25%.
The quadrangular flow harmonic measured with the four-particle cumulats as a function of pseudorapidity in centrality bin 0-25%.
The second flow harmonic measured with the two-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the four-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the six-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the eight-particle cumulats as a function of <Npart>.
The ratio of second flow harmonics measured with the six- and four-particle cumulants as a function of <Npart>.
The ratio of second flow harmonics measured with the eight- and four-particle cumulants as a function of <Npart>.
The second flow harmonic measured with the Event Plane method as a function of <Npart>.
The triangular flow harmonic measured with the Event Plane method as a function of <Npart>.
The triangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The triangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The quadrangular flow harmonic measured with the Event Plane method as a function of <Npart>.
The quadrangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The quadrangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic fluctiuations, F(v2), as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic fluctuations, F(v2), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v3), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v4), as a function of <Npart>.
The second flow harmonic measured with the two-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the four-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the six-particle cumulats as a function of <Npart>.
The second flow harmonic measured with the eight-particle cumulats as a function of <Npart>.
The ratio of second flow harmonics measured with the six- and four-particle cumulants as a function of <Npart>.
The ratio of second flow harmonics measured with the eight- and four-particle cumulants as a function of <Npart>.
The triangular flow harmonic measured with the two-particle cumulants as a function of <Npart>.
The quadrangular flow harmonic measured with the Event Plane method as a function of <Npart>.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{EP} and v2{4}, as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 2-5%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 5-10%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 10-15%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 15-20%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 20-25%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 25-30%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 30-35%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 35-40%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 40-45%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 45-50%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 50-55%.
The second flow harmonic fluctiuations, F(v2), calculated from v2{2} and v2{4}, as a function of transverse momentum in centrality bin 55-60%.
The second flow harmonic fluctuations, F(v2), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v3), as a function of <Npart>.
The triangular flow harmonic fluctuations, F(v4), as a function of <Npart>.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.