Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.
Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.
New results for the double spin asymmetry $A_1^{\rm p}$ and the proton longitudinal spin structure function $g_1^{\rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160\,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{\rm p}(x)$ by about a factor of two in the region $x\lesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $\Delta \Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{\rm p}$. The uncertainty of $\Delta \Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{\rm NS}(x,Q^2)$ yields as ratio of the axial and vector coupling constants $|g_{\rm A}/g_{\rm V}| = 1.22 \pm 0.05~({\rm stat.}) \pm 0.10~({\rm syst.})$, which validates the sum rule to an accuracy of about 9\%.
Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in ($x$, $Q^2$) bins.
Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in $x$ bins averaged over $Q^2$.
Values of $A_1^{\rm p}$ for the 2007 COMPASS data at 160 GeV in ($x$, $Q^2$) bins.
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.
ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of XB. The errors are statistical and systematic.
ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of Z. The errors are statistical and systematic.
ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of PT(HADRON). The errors are statistical and systematic.
Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\langle p_T^2 \rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\langle p_T^2 \rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\langle k_{\perp}^2 \rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.
PT dependences of the differential multiplicities for 0.0045 < x_Bjorken < 0.0060 and 1.00 < Q^2 < 1.25 GeV^2 for Positive hadrons.
PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.00 < Q^2 < 1.30 GeV^2 for Positive hadrons.
PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.30 < Q^2 < 1.70 GeV^2 for Positive hadrons.
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5
Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.
The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.
The measured transverse asymmetry from the proton target as a function of the variable X. Mean values are also given for the variables Q**2[GeV^2], Y, Z, M[GeV], M**2[GeV^2], SIN(THETA), COS(THETA), COS(THETA)**2 and the transverse spin transfer coefficient DNN.
The measured transverse asymmetry from the proton target as a function of the variable Z. Mean values are also given for the variables Q**2[GeV^2], Y, X, M[GeV], M**2[GeV^2], SIN(THETA), COS(THETA), COS(THETA)**2 and the transverse spin transfer coefficient DNN.
The measured transverse asymmetry from the proton target as a function of the variable M. Mean values are also given for the variables Q**2[GeV^2], Y, Z, X, M**2[GeV^2], SIN(THETA), COS(THETA), COS(THETA)**2 and the transverse spin transfer coefficient DNN Note that the data in the last bin (>1.5) does not contribute to the X and Z distributions.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
The Collins and Sivers asymmetries for charged hadrons produced in deeply inelastic scattering on transversely polarised protons have been extracted from the data collected in 2007 with the CERN SPS muon beam tuned at 160 GeV/c. At large values of the Bjorken x variable non-zero Collins asymmetries are observed both for positive and negative hadrons while the Sivers asymmetry for positive hadrons is slightly positive over almost all the measured x range. These results nicely support the present theoretical interpretation of these asymmetries, in terms of leading-twist quark distribution and fragmentation functions.
The COLLINS asymmetry for positively charged hadrons as a function of X.
The COLLINS asymmetry for positively charged hadrons as a function of Z.
The COLLINS asymmetry for positively charged hadrons as a function of PT.
Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb^-1. The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q^2 > 2 Gev^2, and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F_2 was extracted and is compared to theoretical predictions.
Total visible cross section for BBAR production and decay into MUON+JET.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of the muon transverse momentum.
The inclusive double-spin asymmetry, $A^p_1$, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range $Q^2 > 1 (GeV/c)^2, 0.004 < x < 0.7$ and improve the statistical precision of $g^p_1(x)$ by a factor of two in the region $x < 0.02$. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function $g^{NS}_1(x,Q^2)$. The isovector quark density, $\Delta_{q3}(x,Q^2)$, is evaluated from a NLO QCD fit of $g^{NS}_1$. The first moment of $\Delta_{q3}$ is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants $|g_A/g_V$ = $1.28\pm 0.07(stat)\pm 0.10$(syst).
Values of $A_1^p$ and $g_1^p$ as a function of $x$ with corresponding average values of $Q^2$.
Values of $g_1^p$ for the 2007 COMPASS proton data at 160 GeV in ($x$, $Q^2$) bins.