In relativistic heavy-ion collisions, a global spin polarization, $P_\mathrm{H}$, of $\Lambda$ and $\bar{\Lambda}$ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing $P_\mathrm{H}$ with decreasing $\sqrt{s_{NN}}$. A splitting between $\Lambda$ and $\bar{\Lambda}$ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of $\sqrt{s_{NN}}=19.6$ and $27$ GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of $P_{\bar{\Lambda}}-P_{\Lambda}<0.24$% and $P_{\bar{\Lambda}}-P_{\Lambda}<0.35$%, respectively, at a 95% confidence level. We derive an upper limit on the na\"ive extraction of the late-stage magnetic field of $B<9.4\cdot10^{12}$ T and $B<1.4\cdot10^{13}$ T at $\sqrt{s_{NN}}=19.6$ and $27$ GeV, respectively, although more thorough derivations are needed. Differential measurements of $P_\mathrm{H}$ were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of $|y|<1$ and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
The first-order event-plane resolution determined by the STAR EPD as a function of collision centrality is roughly doubled in comparison to previous analyses using the STAR BBC. We see $R_{\rm EP}^{(1)}$ peak for mid-central collisions.
The mid-central $P_{\rm H}$ measurements reported in this work are shown alongside previous measurements in the upper panel, and are consistent with previous measurements at the energies studied here. The difference between integrated $P_{\bar{\Lambda}}$ and $P_{\Lambda}$ is shown at $\sqrt{s_{\rm{NN}}}$=19.6 and 27 GeV alongside previous measurements in the lower panel. The splittings observed with these high-statistics data sets are consistent with zero. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. The previous $P_{\bar{\Lambda}}-P_{\Lambda}$ result at $\sqrt{s_{\rm NN}}=7.7$ GeV is outside the axis range, but is consistent with zero within $2\sigma$.
$P_{\rm H}$ measurements are shown as a function of collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. $P_{\rm H}$ increases with collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV, as expected from an angular-momentum-driven phenomenon.
Global polarizations ($P$) of $\Lambda$ ($\bar{\Lambda}$) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the $\Lambda$ and $\bar{\Lambda}$ global polarizations ($\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0$). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance ($\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0$) between left- and right-handed $\Lambda$ ($\bar{\Lambda}$) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator ($\Delta\gamma$) and parity-odd azimuthal harmonic observable ($\Delta a_{1}$). Measurements of $\Delta P$, $\Delta\gamma$, and $\Delta a_{1}$ have not led to definitive conclusions concerning the CME or the magnetic field, and $\Delta n$ has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between $\Delta n$ and $\Delta a_{1}$, which is sensitive to chirality fluctuations, and correlation between $\Delta P$ and $\Delta\gamma$ sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.
Figure 1
Figure 2ab
Figure 2c
A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
The azimuthal ($\Delta\varphi$) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p$-$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. Results are reported for electrons with transverse momentum $4<p_{\rm T}<16$ GeV/$c$ and pseudorapidity $|\eta|<0.6$. The associated charged particles are selected with transverse momentum $1<p_{\rm T}<7$ GeV/$c$, and relative pseudorapidity separation with the leading electron $|\Delta\eta| < 1$. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p$-$Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The $\Delta\varphi$ distribution and the peak observables in pp and p$-$Pb collisions are compared with calculations from various Monte Carlo event generators.
$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in pp collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
Baseline of $\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ in pp and p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
A search for the electroweak production of a vector-like quark T$'$, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. This is the first T$'$ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T$'$ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1-2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T$'$ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength $\kappa_\mathrm{T}$ = 0.25 and a relative decay width $\Gamma/M_{\mathrm{T}'} \lt$ 5%.
The combined, leptonic plus hadronic, expected (dotted black) and observed (solid black) upper limits at 95% CL on $\sigma_{T^\prime bq} \times \mathcal{B}_{T^\prime \rightarrow tH}$ displayed as a function of $\rm{M}_{T^\prime}$. The green (yellow) band represents the 68% (95%) of the limit values expected under the background-only hypothesis. The theoretical cross sections for the singlet $T^\prime$ production with representative $\kappa_T$-values fixed at 0.1, 0.15, 0.2 and 0.25 (for $\Gamma/\rm{M}_{T^\prime} < 5\%$) are shown as solid red lines. The theoretical cross sections for the singlet $T^\prime$ production with $\Gamma/\rm{M}_{T^\prime}$ = 1 and 5% are also shown in table.
The combined, leptonic plus hadronic, expected (dotted black) and observed (solid black) upper limits at 95% CL on the $T^\prime$ coupling to third-generation quarks, $\kappa_{T}$, under the narrow width approximation (NWA) displayed as a function of $\rm{M}_{T^\prime}$. The green (yellow) band represents the 68% (95%) of the limit values expected under the background-only hypothesis. The theoretical $\kappa_{T}$ values corresponding to the $\Gamma/\rm{M}_{T^\prime}$-values fixed at 1, 2, 3, 4, and 5% are shown as red dashed lines.
The expected (dotted black) and observed (solid black) upper limits at 95% CL on $\sigma_{T^\prime bq(T^\prime \rightarrow tH)}$ in the leptonic channel displayed as a function of $\rm{M}_{T^\prime}$. The green (yellow) band represents the 68% (95%) of the limit values expected under the background-only hypothesis. The theoretical cross sections for the singlet $T^\prime$ production with representative $\kappa_T$-values fixed at 0.1, 0.15, 0.2 and 0.25 (for $\Gamma/\rm{M}_{T^\prime} < 5\%$) are shown as solid red lines.
A search for a charged Higgs boson, $H^{\pm}$, produced in top-quark decays, $t \rightarrow H^{\pm}b$, is presented. The search targets $H^{\pm}$ decays into a bottom and a charm quark, $H^{\pm} \rightarrow cb$. The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying $W$ boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing $b$-hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy $\sqrt{s}=13$ TeV between 2015 and 2018 with the ATLAS detector at CERN's Large Hadron Collider, amounting to an integrated luminosity of 139~fb$^{-1}$. Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions $\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ for charged Higgs boson masses between 60 and 160~GeV, assuming the SM production of the top-quark pairs.
The observed 95% CL upper limits on $\mathscr{B}=\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ as a function of $m_{H^{\pm}}$ and the expectation (dashed) under the background-only hypothesis. The inner green and outer yellow shaded bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits. The exclusion limits are presented for $m_{H^{\pm}}$ between 60 and 160 GeV with 10 GeV $m_{H^{\pm}}$ spacing and linear interpolation between adjacent mass points. Superimposed on the upper limits, the predictions from the 3HDM are shown, corresponding to three benchmark values for the parameters $X$, $Y$, and $Z$
Pre-fit event yields in each of the nine analysis regions. The $H^{\pm}$ signal yields for $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are normalised to $\mathscr{B}_{\mathrm{ref}}=1\%$. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among processes resulting from the data-based $t\bar{t}$ correction procedure.
Post-fit yields in each of the nine analysis regions considered. The total prediction is shown after the fit to data under the signal-plus-background hypothesis assuming $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV. The predicted yileds for the $H^{\pm}$ signal with $m_{H^{\pm}}=70$ GeV are also shown for reference. The best fit-values of $\mathscr{B}$ for $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are 0.16% and 0.07% respectively. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among nuisance parameters and among processes.
This paper presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Leptonic ($\tau \rightarrow \ell \nu_\ell \nu_\tau$) and hadronic ($\tau \rightarrow $ hadrons $ \nu_\tau$) decays of the $\tau$-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, $\mathcal{B}(H\rightarrow e\tau)<0.20\%$ (0.12%) and $\mathcal{B}(H\rightarrow \mu\tau)<0.18\%$ (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential $H \rightarrow e\tau$ and $H \rightarrow\mu\tau$ signals. The best-fit branching ratio difference, $\mathcal{B}(H\rightarrow \mu\tau)- \mathcal{B}(H\rightarrow e\tau)$, measured with the Symmetry method in the channel where the $\tau$-lepton decays to leptons, is (0.25 $\pm$ 0.10)%, compatible with a value of zero within 2.5$\sigma$.
Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.
Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.
Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing best-fit values of the LFV branching ratios of the Higgs boson $\hat{B}$($H\to e\tau$). The results from standalone channel/categories fits are compared with the results of the combined fit.
Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.
The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.
The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.
A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions.
Centrality dependence of $\langle \cos[4(\Psi_{4}-\Psi_{2})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Centrality dependence of $\langle \cos[6(\Psi_{6}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Centrality dependence of $\langle \cos[6(\Psi_{2}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.