The differential cross section in free n-p forward elastic scattering has been measured for incident neutron energies of 378, 481, 582, 683, 784, 884, and 1085 MeV and for momentum transfer 0.01<‖t‖<0.08 (GeV/c)2. The experiment used a recoil-detector ionization chamber which served at the same time as a gas target. Special care has been taken to obtain a precise absolute normalization.
No description provided.
No description provided.
No description provided.
Deuteron spectra at laboratory angles from 30° to 90° were measured in α+(Pb, Cu, and C) collisions at 800, 600, and 200 MeV/nucleon, and α+(Pb and C) collisions at 400 MeV/nucleon. The coalescence relation between protons and deuterons was examined for the inclusive part of the spectra. The size of the interacting region was evaluated from the observed coalescence coefficients. The rms radius is typically 4–5 fm, depending of the target mass. The proton and deuteron energy spectra corresponding to central collisions were fitted assuming emission from a single source moving with a velocity intermediate between that of the projectile and the target. The extracted ‘‘temperatures’’ are independent of the nature of the emitted particle, indicating that the fragments have a common source. The best fits were achieved for 200- and 400-MeV/nucleon reactions. Spectra of deuteron-like pairs, including real deuterons and neutron-proton pairs that may be contained in a larger nuclear cluster, are compared to the prediction of an intranuclear cascade model incorporating a clustering algorithm based on a classical coalescence prescription. Best agreements between experimental and predicted deuteron-like spectra occur for 800- and 600-MeV/nucleon collisions.
No description provided.
No description provided.
No description provided.
We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.
2.75 degree spectrometer data.
5.5 degree spectrometer data.
10.5 degree spectrometer data.
We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.
Data measured using the 2.75 degree spectrometer.
Data measured using the 5.5 degree spectrometer.
Measured value of the twist-3 reduced matrix element D2.
We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.
Data from the 2.75 degree spectrometer.
Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.
Data from the 5.5 degree spectrometer.
The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find $\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007$ at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.
Results for G1/F1 for the proton and neutron.
Results for G1/F1 for the proton and neutron.
Results for G1/F1 for the proton and neutron.
None
.
DATA IS DEPEND OF MODEL.
DATA IS DEPEND OF MODEL.
New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 < x < 0.9 and 1 < Q^2 < 40 (GeV/c)^2. These are the first high dose electron scattering data obtained using lithium deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Sigma.
Extrapolation to the full x range was made using E154 data (see PL 405B, 180 and PRL 79, 26).
Measurments of g1/F1 and g1 using the 2.75 degree spectrometer.
Measurments of g1/F1 and g1 using the 5.5 degree spectrometer.
We have measured absolute differential cross sections and analyzing powers for neutron-proton elastic scattering for momentum transfer 0.01 < | t |< 0.08 (GeV/ c ) 2 at several energies between 378 and 1135 MeV. The ionization chamber IKAR filled with methane was used as both a gas target and recoil detector. For the analyzing-power measurements the scattered neutron was detected in scintillation counters in coincidence with the recoil proton detected in IKAR. Special care was taken to ensure a precise absolute normalization of the cross sections, with overall systematic uncertainties of 4–7%.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=6.4 PCT.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=5.4 PCT.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=6.5 PCT.
None
.
.
.