In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.
We present the differential cross sections near u=0 for the reactions π−p→K0Λ and π−p→K*0(890)Λ at incident pion momenta of 8 and 10.7 GeV/c. The differential cross section for the first reaction follows the exponential dependence on u previously observed, while the second shows a dip in the backward direction.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.
Studies have been made of the reactions π + p→p π + π + π − and π − p→p π + π − π − , both at an incident pion momentum of 18.5 GeV/ c . The two-body (primarily Δ ++ and ϱ o and three-body (low-mass A enhancement, A 3 , N ∗ (1400), and N ∗ (1700)) subsystems are discussed. Cross sections for all significant channels of the reactions are given.
No description provided.
The polarized target asymmetry for γ + p → π + + n was measured at c.m. angles around 130° for the energy range between 0.3 and 1.0 GeV. A magnetic spectrometer system was used to detect π + mesons from the polarized butanol target. The data show two prominent positive peaks at 0.4 and 0.8 GeV and a deep minimum at 0.6 GeV. These features are well reproduced by the phenomenological analysis made by us.
No description provided.
None
No description provided.
No description provided.
The inclusive ϱ ° production cross section has been measured in the reaction π − p → π + π − X at 205 GeV/ c . We find σ ( ϱ ° ) = 13.5 ± 3.4 mb, with most of the production occuring in the central region. Assuming σ ( ϱ + ) ≈ σ ( ϱ − ) ≈ σ ( ϱ ° ), it is concluded that approximately one-third of the pions at this energy come from ϱ -decay.
No description provided.
No description provided.
No description provided.
The single diffraction dissociation process pp → (p π + π − )p has been studied at the CERN ISR at √ s = 45 GeV and 0.1 < − t < 0.6 GeV 2 . The reaction is dominated by nucleon resonance production: pp → pN (1520) and pp → pN(1688) with cross-sections (0.25 ± 0.08) mb and (0.56 ± 0.19) mb respectively.
DIFFERENTIAL CROSS SECTIONS FOR THREE RANGES OF <P PI+ PI-> MASS.
FROM BREIT-WIGNER PLUS BACKGROUND FITS. CORRECTIONS FOR OTHER DECAY MODES USE THE PDG 1974 TABLES FOR N(1520) AND N(1688).
We report on the results at ADONE to study the properties of the newly found 3.1-BeV particle.
No description provided.
A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.
No description provided.
No description provided.
FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.
The polarized target asymmetry in the reaction γp→π°p has been measured at c.m. angles around 100° for photon energies between 0.4 and 1.0 GeV by detecting both the recoil proton and the π°. The result is compared with recent analyses.
No description provided.