Inclusive and semi-inclusive cross sections and distributions of γ's and π0's inK+p interactions at 70 GeV/c are presented. The results are compared to other experiments and to the Lund model for low-pT hadron collisions.
No description provided.
No description provided.
No description provided.
None
.
.
.
We present results on inclusive φ meson production in K + p interactions at 70 GeV/ c in the kaon fragmentation x >0.2 region. Comparison with other data on φ meson production in K ± and p induced reactions provides evidence that the strange valence-quark fragmentation or recombination processes play the dominant role in the K ± → φ transitions. Arguments are presented that the kaon valence strange s -quark carries a much higher momentum fraction than the u-quark. Evidence for the previously observed narrow φπ + state at mass ∼2.1 GeV is discussed.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
.
.
We present results on the inclusive polarization of Λ hyperons produced in K + p interactions at 32 and 70 GeV/ c . A large positive Λ polarization is observed in the kaon fragmentation region. The polarization is energy independent, increases strongly with increasing x , but shows essentially no p T -dependence.
.
.
.
abstract only
No description provided.
No description provided.
No description provided.
The inclusive production of neutral kaons in 70 GeV/ c K + p interactions is studied with the CERN BEBC bubble chamber. The (semi-)inclusive cross sections are interpreted in terms of the various strangeness channels leading to neutral kaon production. The invariant inclusive cross section for kaon production is studied as a function of p t 2 and the Feynman variable x . The latter distributions are considered both “raw” and corrected for the presence of K 0 's resulting from K ∗ decay. They are compared with the predictions expected from the Regge-Mueller formalism, the recombination model and fragmentation models.
No description provided.
No description provided.
Inclusive charged pion production is studied in an exposure of BEBC, filled with hydrogen, to an incidentK+ beam of 70 GeV/c. Total cross sections for pion production and inclusive longitudinal and transverse momentum distributions of π−'s and of positive particles are presented and compared with data at lower energies. Earlier evidence for scaling in the fragmentation regions is confirmed. The central region π− cross section increases proportionally topLAB−1/4; positive particles show almost no energy dependence atx=0. Particle ratios π+/π− are studied as a function ofx andy* and a comparison with 70 GeV/cK−p data is made. Analysis of structure functions for (ππ) pairs and of particle production associated with π± triggers at large |x| in the context of quark/parton models, provides qualitative evidence for the diquark-quark structure of the proton.
No description provided.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.