The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.
The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.
The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.
The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.
The process e^+e^- -> Z gamma gamma -> q q~ gamma gamma is studied in 0.5 fb-1 of data collected with the L3 detector at centre-of-mass energies between 130.1 GeV and 201.7 GeV. Cross sections are measured and found to be consistent with the Standard Model expectations. The study of the least energetic photon constrains the quartic gauge boson couplings to -0.008 GeV-2 < a_0/\Lambda^2 < 0.005 GeV-2 and -0.007 GeV-2 < a_c/\Lambda^2 < 0.011 GeV-2, at 95% confidence level.
No description provided.
The results are presented for more more restrictive phase space.
CONST(NAME=LAMBDA_NEW) is New Physics scale. COUPLING(NAME=A0,AC) are quartic gauge boson couplings of the effective Lagrangians (see paper for details).
Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 864-, 981-, and 1301-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. The spark chambers proved to be very suitable polarization analyzer detectors. Strong variation of the polarization with backward pion scattering angle was observed.
No description provided.
No description provided.
No description provided.
Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 523-, 572-, and 689-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. Typical strong variation of the polarization with pion scattering angle near the πp diffraction minima was observed. Since existing opinion favors a D13 resonance at 600 MeV, a phase-shift analysis was attempted in order to confirm the existence and parity of this resonance. Available πp total and differential cross sections, these polarization data, and some possible restrictive assumptions related to the 600-MeV resonance were used in the analysis. Though the polarization results aided significantly in restricting the number of acceptable phase-shift sets, still, many plausible and qualitatively different sets were found.
No description provided.
No description provided.
No description provided.
Two samples of exclusive semileptonic decays, 579 B 0 → D ∗+ ℓ − ν ℓ events and 261 B 0 → D + ℓ − ν ℓ events, are selected from approximately 3.9 million hadronic Z decays collected by the ALEPH detector at LEP. From the reconstructed differential decay rate of each sample, the product of the hadronic form factor F (ω) at zero recoil of the D (∗)+ meson and the CKM matrix element | V cb | are measured to be F D ∗+ (1)|V cb | = (31.9 ± 1.8 stat ± 1.9 syst ) × 10 −3 , F D + (1)| V cb | = (27.8 ± 6.8 stat ± 6.5 syst ) × 10 −3 . The ratio of the form factors F D + (1) and F D ∗+ (1) is measured to be F D + (1) F D ∗+ (1) = 0.87 ± 0.22 stat ± 0.21 syst . A value of | V cb | is extracted from the two samples, using theoretical constraints on the slope and curvature of the hadronic form factors and their normalization at zero recoil, with the result | V cb | = (34.4 ± 1.6 stat ± 2.3 syst ± 1.4 th ) × 10 −3 . The branching fractions are measured from the two integrated spectra to be Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (5.53 ± 0.26 stat ±0.52 syst ) %, Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (2.35 ± 0.20 stat ± 0.44 syst ) %.
The formfactors are evaluated at zero recoil of D meson. Two different methods are used (see text for details). VCB is the KCM matrix element. The formfactor fitted to dependence: FF(OM) = FF(1)*(1-CONST*(OM-1)).
VCB is the KCM matrix element.
VCB is the KCM matrix element.
Using data collected from 1992 to 1995 with the ALEPH detector at LEP, a measurement of the colour factor ratios CA/CF and TF /CF and the strong coupling constant αs = CFαs(MZ)/(2π) has been performed by fitting theoretical predictions simultaneously to the measured differential two-jet rate and angular distributions in four-jet events. The result is found to be in excellent agreement with QCD, {fx4-1} Fixing CA/CF and TF/CF to the QCD values permits a determination of αs(MZ) and ηf, the number of active flavours. With this measurement the existence of a gluino with mass below 6.3 GeV/c2 is excluded at 95% confidence level.
Fit A: using all kinematical distributions. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit B: using all kinematical distributions, but QCD magnitudes for color factors are used: FA(DEF=NC/CF)) = 2.25 and TF/CF = 0.375. NC, CF, and TF are the color factors for SU(3) group, NF is the number of the active flavors.
Fit C: the QCD magnitudes for color factors and NF = 5 are used.
Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $< p_{T}^{\mathrm{D^*}} < 5 $ GeV and $\mathrm{|\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.
The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.
The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.
Integrated cross section in the visible kinematic region.
We report evidence for the production of the charged D ∗ mesons in pp̄ collisions at s = 540 GeV . The search was confined to the charged particle fragments of hadronic jets, which are expected to be predominantly gluon jets in this experiment. The fragmentation function and production rate for D ∗ in jets of average transverse momentum of 28 GeV/ c are given.
THE D*'S ARE CONSIDERED AS ARISING ONLY FROM FRAGMENTATION OF HADRONIC JETS ('GLUON' JETS). HERE THE <PT> OF THE JET IS AROUND 28 GEV THE DEFINITION OF Z IS P(D*).P(JET)/(P(JET))**2.
The two-jet cross section measured in the UA1 apparatus at the CERN p p Collider has been analysed in terms of the centre-of-mass scattering angle θ and the scaled longitudinal parton momenta x 1 and x 2 . The angular distribution d σ /d cos σ rises rapidly as cos → 1, independent of x 2 and x 2 , as expected in vector gluon theories (QCD). The differential cross section in x 1 and x 2 is consistent with factorization and provides a measurement of the proton structure function F(x) = G(x) + 4 9 [Q(x) + Q (x)] at values of the four-momentum transfer squared, -t̂ ≈ 2000 GeV 2 . Over the range x = 0.10−0.80 the structure function shows an exponential x dependence and may be parametrized by the form F ( x ) = 6.2 exp (−9.5 x ).
S(X1,X2) IS DEFINED BY X1*X2*D2(SIG)/DX1/DX2 NORMAISED APPROPRIATELY.
F(X) DEFINED AS G(X)+(4/9)*(Q(X)+QBAR(X)).
Muons of high transverse momentum p μ T have been observed in the large drift chambers surrounding the UA1 detector at the CERN 540 GeV pp̄ collider. For an integrated luminosity of 108 nb −1 , 14 isolated muons have been found with p T > 15 GeV/ c . They are correlated with a large imbalance in total transverse energy, and show a kinematic behaviour consistent with the muonic decay of the Intermediate Vector Boson W ± of weak interactions. The partial cross section is in agreement with previous measurements for electronic decays and with muon-electron universality. The W mass is determined to be m W = 81 +6 −7 GeV/ c 2 .
No description provided.