The differential cross-section for π+ photoproduction from hydrogen by γ-rays of laboratory energy 187 MeV has been measured at four angles. Two identical counter systems, designed to detect low energy pions unambiguosly in intense electron and γ-ray backgrounds, were used in conjunction with a cylindrical liquid hydrogen target, of very low boil-off rate. The cross-sections at laboratory angles of 39.2°, 66.7°, 111.6°, and 134° are 7.49±0.47, 8.10±0.57, 8.36±0.61 and 9.54±0.61, ·10−30cm2/sr, respectively, where the assigned errors refer only to the relative values. The absolute cross-sections are in substantial agreement with the dispersion theory and confirm the front to back asymmetry.
No description provided.
Differential cross sections for the elastic scattering of positive pi mesons by protons were measured at the Berkeley Bevatron at pion laboratory kinetic energies between 500 and 1600 MeV. Fifty scintillation counters and a matrix coincidence system were used to identify incoming pions and detect the recoil proton and pion companions. Results were fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections were obtained by integrating under the fitted curves. The coefficients of the cosine series are displayed, plotted versus the laboratory kinetic energy of the pion. The most striking features of these curves are the large positive value of the coefficient of cos6θ*, and the large negative value of the coefficient of cos4θ*, both of which maximize in the vicinity of the 1350-MeV peak in the total cross section. These results indicate that the most predominant state contributing to the scattering at the 1350-MeV peak has total angular momentum J=72, since the coefficients for terms above cos6θ* are negligible at this energy. One possible explanation is that the 1350-MeV peak is the result of an F72 resonance lying on the same Regge-pole trajectory as the (32, 32) resonance near 195 MeV.
No description provided.
No description provided.
No description provided.
Differential cross sections for the elastic scattering of negative pi mesons on protons (π−−p→π−−p) were measured at the Berkeley Bevatron at five laboratory kinetic energies of the pion between 500 and 1000 MeV. The results were least-squares fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections for π−−p→π−−p were obtained by integrating under the fitted curves. The coefficients of the cosine series are shown plotted versus the incident pion laboratory kinetic energy. These curves display as a striking feature a large value of the coefficient of cos5θ* peaking in the vicinity of the 900-MeV resonance. This implies that a superposition of F52 and D52 partial waves is prominent in the scattering at this energy, since the coefficients for terms above cos5θ* are negligible. One possible explanation is that the F52 enhancement comes from an elastic resonance in the isotopic spin T=12 state, consistent with Regge-pole formalism, and the D52 partial-wave state may be enhanced by inelastic processes. At 600 MeV the values of the coefficients do not seem to demand the prominence of any single partial-wave state, although the results are compatible with an enhancement in the J=32 amplitude. A table listing quantum numbers plausibly associated with the various peaks and "shoulders" seen in the π±−p total cross-section curves is presented.
No description provided.
No description provided.
No description provided.
Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 523-, 572-, and 689-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. Typical strong variation of the polarization with pion scattering angle near the πp diffraction minima was observed. Since existing opinion favors a D13 resonance at 600 MeV, a phase-shift analysis was attempted in order to confirm the existence and parity of this resonance. Available πp total and differential cross sections, these polarization data, and some possible restrictive assumptions related to the 600-MeV resonance were used in the analysis. Though the polarization results aided significantly in restricting the number of acceptable phase-shift sets, still, many plausible and qualitatively different sets were found.
No description provided.
No description provided.
No description provided.
Angular distributions of recoil-proton polarization in elastic π±p scattering were measured at 864-, 981-, and 1301-MeV incident pion kinetic energy. Polarization measurements were made by observing the azimuthal asymmetry in the subsequent scattering of recoil protons in large carbon-plate spark chambers. The spark chambers proved to be very suitable polarization analyzer detectors. Strong variation of the polarization with backward pion scattering angle was observed.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
We have measured the asymmetry of the cross section for γp→π+n from a polarized target at 5 and 16 GeV. The range of four-momentum transfer was 0.02<~−t<~1.0 GeV2. The π+ mesons were produced in a polarized butanol target and detected with the Stanford Linear Accelerator Center 20−GeVc spectrometer. A sizable asymmetry was found at both 5 and 16 GeV, a typical value being -0.6 near −t=0.3 GeV2. A small amount of data on the asymmetry of other photoproduction processes was also obtained.
No description provided.
No description provided.
No description provided.
In a scintillation-counter experiment, we have observed two narrow, neutral mesons in addition to the well-established η′ (958) in the reaction π−p→M0n at 2.4 GeVc. We observe a mass of 940.5 ± 1.7 MeV, Γ<10.4 MeV for the M0(940), and a mass of 962.9 ± 1.7 MeV, Γ<5.9 MeV for the δ0.
CROSS SECTION OVERALL UNCERTAINTY (APART FROM ETA PRODUCTION) ABOUT 30 PCT.
None
No description provided.
Final state resonance production and single particle momentum spectra are presented for p p annihilations into K K and π's between 1.09 and 3.45 GeV/ c . Resonance production generally agrees with the Lamb statistical model. Momentum spectra of K's and π's are independent of incident energy, while the mean multiplicity increases in proportion to the c.m. energy, supporting the annihilation model of Jacob and Nussinov.
THESE CROSS SECTIONS WERE GIVEN IN DETAIL IN B. Y. OH ET AL., NP B51, 57 (1973).
No description provided.