Date

Study of the two-charged-particle final states of 3.9-gev/c pi+- p interactions including a longitudinal-momentum analysis of the one-pion- production channels

Bastien, P.L. ; Carmel, Z. ; Dao, F.T. ; et al.
Phys.Rev.D 3 (1971) 2047-2064, 1971.
Inspire Record 68000 DOI 10.17182/hepdata.23677

We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.

15 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of Negative Pions on Protons in the Energy Range 500-1000 MeV

Helland, Jerome A. ; Wood, Calvin D. ; Devlin, Thomas J. ; et al.
Phys.Rev. 134 (1964) B1079-B1086, 1964.
Inspire Record 46851 DOI 10.17182/hepdata.598

Differential cross sections for the elastic scattering of negative pi mesons on protons (π−−p→π−−p) were measured at the Berkeley Bevatron at five laboratory kinetic energies of the pion between 500 and 1000 MeV. The results were least-squares fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections for π−−p→π−−p were obtained by integrating under the fitted curves. The coefficients of the cosine series are shown plotted versus the incident pion laboratory kinetic energy. These curves display as a striking feature a large value of the coefficient of cos5θ* peaking in the vicinity of the 900-MeV resonance. This implies that a superposition of F52 and D52 partial waves is prominent in the scattering at this energy, since the coefficients for terms above cos5θ* are negligible. One possible explanation is that the F52 enhancement comes from an elastic resonance in the isotopic spin T=12 state, consistent with Regge-pole formalism, and the D52 partial-wave state may be enhanced by inelastic processes. At 600 MeV the values of the coefficients do not seem to demand the prominence of any single partial-wave state, although the results are compatible with an enhancement in the J=32 amplitude. A table listing quantum numbers plausibly associated with the various peaks and "shoulders" seen in the π±−p total cross-section curves is presented.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of Positive Pions by Protons in the Energy Range 500-1600 MeV

Helland, Jerome A. ; Devlin, Thomas J. ; Hagge, Donald E. ; et al.
Phys.Rev. 134 (1964) B1062-B1078, 1964.
Inspire Record 46850 DOI 10.17182/hepdata.597

Differential cross sections for the elastic scattering of positive pi mesons by protons were measured at the Berkeley Bevatron at pion laboratory kinetic energies between 500 and 1600 MeV. Fifty scintillation counters and a matrix coincidence system were used to identify incoming pions and detect the recoil proton and pion companions. Results were fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections were obtained by integrating under the fitted curves. The coefficients of the cosine series are displayed, plotted versus the laboratory kinetic energy of the pion. The most striking features of these curves are the large positive value of the coefficient of cos6θ*, and the large negative value of the coefficient of cos4θ*, both of which maximize in the vicinity of the 1350-MeV peak in the total cross section. These results indicate that the most predominant state contributing to the scattering at the 1350-MeV peak has total angular momentum J=72, since the coefficients for terms above cos6θ* are negligible at this energy. One possible explanation is that the 1350-MeV peak is the result of an F72 resonance lying on the same Regge-pole trajectory as the (32, 32) resonance near 195 MeV.

8 data tables

No description provided.

No description provided.

No description provided.

More…