Deep Inelastic Scattering of Polarized Electrons by Polarized $^3$He and the Study of the Neutron Spin Structure

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.D 54 (1996) 6620-6650, 1996.
Inspire Record 424108 DOI 10.17182/hepdata.22340

The neutron longitudinal and transverse asymmetries $A^n_1$ and $A^n_2$ have been extracted from deep inelastic scattering of polarized electrons by a polarized $^3$He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions $g^n_1 (x,Q^2)$ and $g^n_2(x,Q^2)$ over the range $0.03 < x < 0.6$ at an average $Q^2$ of 2 (GeV$/c)^2$. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function $g^n_1 (x,Q^2)$ is small and negative within the range of our measurement, yielding an integral ${\int_{0.03}^{0.6} g_1^n(x) dx}= -0.028 \pm 0.006 (stat) \pm 0.006 (syst) $. Assuming Regge behavior at low $x$, we extract $\Gamma_1^n=\int^1_0 g^n_1(x)dx = -0.031 \pm 0.006 (stat)\pm 0.009 (syst) $. Combined with previous proton integral results from SLAC experiment E143, we find $\Gamma_1^p - \Gamma_1^n = 0.160 \pm 0.015$ in agreement with the Bjorken sum rule prediction $\Gamma^p_1 - \Gamma ^n_1 = 0.176 \pm 0.008$ at a $Q^2$ value of 3 (GeV$/c)^2$ evaluated using $\alpha_s = 0.32\pm 0.05$.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the neutron spin structure function g2(n) and asymmetry A2(n).

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 404 (1997) 377-382, 1997.
Inspire Record 443408 DOI 10.17182/hepdata.27082

We have measured the neutron structure function g$_{2}^{n}$ and the virtual photon-nucleon asymmetry A$_{2}^{n}$ over the kinematic range $0.014\leq x \leq 0.7$ and $1.0 \leq Q^{2} \leq 17.0$ by scattering 48.3 GeV longitudinally polarized electrons from polarized $^{3}$He. Results for A$_{2}^{n}$ are significantly smaller than the $\sqrt{R}$ positivity limit over most of the measured range and data for g$_2^{n}$ are generally consistent with the twist-2 Wandzura-Wilczek prediction. Using our measured g$_{2}^{n}$ we obtain results for the twist-3 reduced matrix element $d_{2}^{n}$, and the integral $\int$g$_{2}^{n}(x)dx$ in the range $0.014\leq x \leq 1.0$. Data from this experiment are combined with existing data for g$_{2}^{n}$ to obtain an average for $d_{2}^{n}$ and the integral $\int$g$_{2}^{n}(x)dx$.

4 data tables

Data measured using the 2.75 degree spectrometer.

Data measured using the 5.5 degree spectrometer.

Measured value of the twist-3 reduced matrix element D2.

More…

Next-to-leading order QCD analysis of polarized deep inelastic scattering data.

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 405 (1997) 180-190, 1997.
Inspire Record 443186 DOI 10.17182/hepdata.27078

We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.

7 data tables

Data from the 2.75 degree spectrometer.

Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.

Data from the 5.5 degree spectrometer.

More…

Quasielastic scattering of polarized electrons from polarized He-3 and measurement of the neutron's form-factors

Thompson, A.K. ; Bernstein, A.M. ; Chupp, T.E. ; et al.
Phys.Rev.Lett. 68 (1992) 2901-2904, 1992.
Inspire Record 338099 DOI 10.17182/hepdata.19863

We report measurements of asymmetries in quasielastic scattering of polarized electrons from polarized He3 at Q2=-0.2 GeV/c)2. We measure AT′=(-2.6±0.9±0.46)% and ATL′=(+1.75±1.2±0.31)%. The asymmetry AT′ depends predominantly on the previously measured neutron magnetic form factor and provides a test of theories of spin-dependent quasielastic scattering. Our result for AT′ is consistent with a previously reported measurement and suggests that the current theoretical picture is incomplete and final-state-interaction and meson-exchange corrections are necessary if the electric form factor of the neutron is to be reliably extracted from the asymmetry of ATL′.

1 data table

No description provided.


Determination of the neutron spin structure function..

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.Lett. 71 (1993) 959-962, 1993.
Inspire Record 359353 DOI 10.17182/hepdata.19693

The spin structure function of the neutron g1n has been determined over the range 0.03<x<0.6 at an average Q2 of 2 (GeV/c)2 by measuring the asymmetry in deep inelastic scattering of polarized electrons from a polarized He3 target at energies between 19 and 26 GeV. The integral of the neutron spin structure function is found to be F01g1n(x)dx=-0.022±0.011. Earlier reported proton results together with the Bjorken sum rule predict F01g1n(x)dx=-0.059±0.019.

2 data tables

No description provided.

Extrapolarity to full x range.


Precision determination of the neutron spin structure function g1(n).

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Rev.Lett. 79 (1997) 26-30, 1997.
Inspire Record 443170 DOI 10.17182/hepdata.19559

We report on a precision measurement of the neutron spin structure function $g^n_1$ using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014&lt;x&lt;0.7 and 1 (GeV/c)^2&lt; Q^2&lt; 17 (GeV/c)^2, we obtain $\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst)$ at an average $Q^2=5 (GeV/c)^2$. We find relatively large negative values for $g^n_1$ at low $x$. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral $\int^1_0 g^n_1(x)dx$, needed for testing quark-parton model and QCD sum rules.

3 data tables

No description provided.

No description provided.

No description provided.


Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Inclusive double-helicity asymmetries in neutral pion and eta meson production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 012007, 2014.
Inspire Record 1282448 DOI 10.17182/hepdata.64716

Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.

9 data tables

PI0 ASYM(LL) measurements from 2005.

PI0 ASYM(LL) measurements from 2006.

PI0 ASYM(LL) measurements from 2009.

More…

Production rates of b anti-b quark pairs from gluons and b anti-b b anti-b events in hadronic Z0 decays.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2001) 447-460, 2001.
Inspire Record 535059 DOI 10.17182/hepdata.49875

The rates are measured per hadronic Z decay for gluon splitting to bb(bar) quark pairs, g_bb, and of events containing two bb(bar) quark pairs, g_4b, using a sample of four-jet events selected from data collected with the OPAL detector. Events with an enhanced signal of gluon splitting to bb(bar) quarks are selected if two of the jets are close in phase-space and contain detached secondary vertices. For the event sample containing two bb(bar) quark pairs, three of the four jets are required to have a significantly detached secondary vertex. Information from the event topology is combined in a likelihood fit to extract the values of g_bb and g_4b, namely g_bb = (3.07 +- 0.53(stat) +- 0.97(syst))x10^-3 g_4b = (0.36 +- 0.17(stat) +- 0.27(syst))x10^-3

1 data table

No description provided.


Measurement of the branching ratio for D/s- --> tau- anti-nu/tau decays.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 516 (2001) 236-248, 2001.
Inspire Record 553945 DOI 10.17182/hepdata.49836

Using about 3.9 million hadronic Z decays from e+e- collisions recorded by the OPAL detector at LEP at centre-of-mass energies near MZ the branching ratio for the decay D_s -> tau nu_tau has been measured to be (7.0 +/- 2.1(stat) +/- 2.0 (syst))%. This result can be used to derive the decay constant of the D_s meson: f(D_s) = 286 +/- 44(stat) +/- 41(syst) MeV.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant.