A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.
<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R > 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R > 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R < 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>
Validation of background estimate in validation regions for the High-pT jet selections
Validation of background estimate in validation regions for the Trackless jet selections
Using a low background data sample of $9.7\times10^{5}$ $J\psi\rightarrow\gamma\eta^\prime$, $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ are studied with both model-dependent and model-independent approaches. The contributions of $\omega$ and the $\rho(770)-\omega$ interference are observed for the first time in the decays $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ in both approaches. Additionally, a contribution from the box anomaly or the $\rho(1450)$ resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
Numbers of events selected (Column 2), numbers of background events from sideband (Column 3), efficiencies (Column 4), and resolution RMS (Column 5) for different $M_{\pi^+\pi^-}$ bins.
The process $e^{+}e^{-}\to \eta^{\prime} J/\psi$ is observed for the first time with a statistical significance of $8.6\sigma$ at center-of-mass energy $\sqrt{s} = 4.226$ GeV and $7.3\sigma$ at $\sqrt{s} = 4.258$ GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be $(3.7 \pm 0.7 \pm 0.3)$ and $(3.9 \pm 0.8 \pm 0.3)$ pb at $\sqrt{s} = 4.226$ and $4.258$ GeV, respectively, where the first errors are statistical and the second systematic. Upper limits at the 90% confidence level of the Born cross sections are also reported at other 12 energy points.
Summary of the values used to calculate the Born cross section of $e^{+}e^{-}\to\eta^{\prime} J/\psi$. The upper limits are at the $90\%$ C.L.
We study the decays of the charmonium resonances $J/\psi$ and $\psi(3686)$ to the final states $\Xi^{-}\bar\Xi^{+}$, $\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$ based on a single baryon tag method using data samples of $(223.7 \pm 1.4) \times 10^{6}$ $J/\psi$ and $(106.4 \pm 0.9) \times 10^{6}$ $\psi(3686)$ events collected with the BESIII detector at the BEPCII collider. The decay $\psi(3686)\rightarrow\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$ is observed for the first time, and the measurements of the other processes, including the branching fractions and angular distributions, are in good agreement with and much more precise than the previously published results. Additionally, the ratios $\frac{{\cal{B}}(\psi(3686)\rightarrow\Xi^{-}\bar\Xi^{+})}{{\cal{B}}(J/\psi\rightarrow\Xi^{-}\bar\Xi^{+})}$, $\frac{{\cal{B}}(\psi(3686)\rightarrow\Sigma(1385)^{-}\bar\Sigma(1385)^{+})}{{\cal{B}}(J/\psi\rightarrow\Sigma(1385)^{-}\bar\Sigma(1385)^{+})}$ and $\frac{{\cal{B}}(\psi(3686)\rightarrow\Sigma(1385)^{+}\bar\Sigma(1385)^{-})}{{\cal{B}}(J/\psi\rightarrow\Sigma(1385)^{+}\bar\Sigma(1385)^{-})}$ are determined.
The number of the observed events $N_\rm{obs.}$, efficiencies $\epsilon$, $\alpha$ values, and branching fractions ${\cal B}$ for $\psi\rightarrow\Xi^{-}\bar\Xi^{+}$, $\Sigma(1385)^{\mp}\bar\Sigma(1385)^{\pm}$. Only statistical uncertainties are indicated.
Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies $\sqrt{s} >$ 4.4 GeV, the processes $e^+e^- \rightarrow \omega \chi_{c1,2}$ are observed for the first time. With an integrated luminosity of $1074 pb^{-1}$ near $\sqrt{s} =$ 4.42 GeV, a significant $\omega \chi_{c2}$ signal is found, and the cross section is measured to be $(20.9 \pm 3.2 \pm 2.5)\pb$. With $567 pb^{-1}$ near $\sqrt{s} =$ 4.6 GeV, a clear $\omega \chi_{c1}$ signal is seen, and the cross section is measured to be $(9.5 \pm 2.1 \pm 1.3) \pb$, while evidence is found for an $\omega \chi_{c2}$ signal. The first errors are statistical and the second are systematic. Due to low luminosity or low cross section at other energies, no significant signals are observed. In the $\omega \chi_{c2}$ cross section, an enhancement is seen around $\sqrt{s} =$ 4.42 GeV. Fitting the cross section with a coherent sum of the $\psi(4415)$ Breit-Wigner function and a phase space term, the branching fraction $\mathcal{B}(\psi(4415)\to\omega\chi_{c2})$ is obtained to be of the order of $10^{-3}$.
Results on $e^+e^-\to \omega \chi_{c0}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1+\delta)\frac{1}{|1-\Pi|^{2}}(\epsilon_{\pi}\mathcal{B}(\chi_{c0}\to\pi^+\pi^-)+\epsilon_{K}\mathcal{B}(\chi_{c0}\to K^+K^-))\mathcal{B}(\omega\to\pi^+\pi^{-}\pi^{0})\mathcal{B}(\pi^{0}\to\gamma\gamma)$ for $\omega\chi_{c0}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point.
Results on $e^+e^-\to \omega \chi_{c1}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c1}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c1}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
Results on $e^+e^-\to \omega \chi_{c2}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c2}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c2}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.
In an analysis of a 2.92~fb$^{-1}$ data sample taken at 3.773~GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions to be $\mathcal B(D^0 \to K^-e^+\nu_e)=(3.505\pm 0.014 \pm 0.033)\%$ and $\mathcal B(D^0 \to \pi^-e^+\nu_e)=(0.295\pm 0.004\pm 0.003)\%$. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the CKM matrix element $f_{+}^K(0)|V_{cs}|=0.7172\pm0.0025\pm 0.0035$ and $f_{+}^{\pi}(0)|V_{cd}|=0.1435\pm0.0018\pm 0.0009$. Combining these products with the values of $|V_{cs(d)}|$ from the SM constraint fit, we extract the hadronic form factors $f^K_+(0) = 0.7368\pm0.0026\pm 0.0036$ and $f^\pi_+(0) = 0.6372\pm0.0080\pm 0.0044$, and their ratio $f_+^{\pi}(0)/f_+^{K}(0)=0.8649\pm 0.0112\pm 0.0073$. These form factors and their ratio are used to test unquenched Lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of $f_+^{K(\pi)}(0) |V_{cs(d)}|$ and the lattice QCD value for $f^{K(\pi)}_+(0)$ are used to extract values of the CKM matrix elements of $|V_{cs}|=0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239$ and $|V_{cd}|=0.2155 \pm 0.0027 \pm 0.0014 \pm 0.0094$, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for $f_+^\pi(0)/f_+^K(0)$, we determine the ratio $|V_{cd}|/|V_{cs}|=0.238\pm 0.004\pm 0.002\pm 0.011$, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to K^-e^+\nu_e$ decays.
Summary of the range of each $q^2$ bin, the number of the observed events $N_{\rm observed}$, the number of produced events $N_{\rm produced}$, and the partial decay rate $\Delta\Gamma$ in each $q^2$ bin for $D^0\to \pi^-e^+\nu_e$ decays.
Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.
Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.
Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.
Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.
We report the first observation of the Dalitz decay $\eta' \to \gamma e^+e^-$, based on a data sample of 1.31 billion $J/\psi$ events collected with the BESIII detector. The $\eta'$ mesons are produced via the $J/\psi \to \gamma \eta'$ decay process. The ratio $\Gamma(\eta' \to \gamma e^+ e^-)/\Gamma(\eta'\to\gamma\gamma)$ is measured to be $(2.13\pm0.09(\text{stat.})\pm0.07(\text{sys.}))\times10^{-2}$. This corresponds to a branching fraction ${\cal B}(\eta' \to \gamma e^+e^-)= (4.69 \pm0.20(\text{stat.})\pm0.23(\text{sys.}))\times10^{-4}$. The transition form factor is extracted and different expressions are compared to the measured dependence on the $e^+e^-$ invariant mass. The results are consistent with the prediction of the Vector Meson Dominance model.
Fitted ($n^{\text{obs}}_i$) and efficiency-corrected ($n^{\text{corr}}_i$) signal yields for the eight $M(e^+e^-)$ bins, and ratios ($r_i$). The uncertainties are statistical only.
Values of $|F|^2$ in each $M(e^+e^-)$ bin.
Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\rightarrow p\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|G_{M}|$ within uncertainties.
Summary of the Born cross section $\sigma_\text{Born}$, the effective FF $|G|$, and the related variables used to calculate the Born cross sections at the different c.m.energies $\sqrt{s}$, where $N_\text{obs}$ is the number of candidate events, $N_\text{bkg}$ is the estimated background yield, $\varepsilon^\prime=\varepsilon\times(1+\delta)$ is the product of detection efficiency $\varepsilon$ and the radiative correction factor $(1+\delta)$, and $L$ is the integrated luminosity. The first errors are statistical, and the second systematic.