Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

Measurement of exclusive pion pair production in proton-proton collisions at $\sqrt{s}=$7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 627, 2023.
Inspire Record 2606496 DOI 10.17182/hepdata.131222

The exclusive production of pion pairs in the process $pp\to pp\pi^+\pi^-$ has been measured at $\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, using 80 $\mu$b$^{-1}$ of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross section values of $4.8 \pm 1.0 \text{(stat.)} + {}^{+0.3}_{-0.2} \text{(syst.)}\mu$b and $9 \pm 6 \text{(stat.)} + {}^{+2}_{-2}\text{(syst.)}\mu$b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Observation of $e^+e^- \rightarrow \omega \chi_{c1,2}$ near $\sqrt{s}$ = 4.42 and 4.6 GeV

The BESIII collaboration Ablikim, Medina ; Achasov, Mikhail N ; Ai, Xiaocong ; et al.
Phys.Rev.D 93 (2016) 011102, 2016.
Inspire Record 1406939 DOI 10.17182/hepdata.76981

Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies $\sqrt{s} >$ 4.4 GeV, the processes $e^+e^- \rightarrow \omega \chi_{c1,2}$ are observed for the first time. With an integrated luminosity of $1074 pb^{-1}$ near $\sqrt{s} =$ 4.42 GeV, a significant $\omega \chi_{c2}$ signal is found, and the cross section is measured to be $(20.9 \pm 3.2 \pm 2.5)\pb$. With $567 pb^{-1}$ near $\sqrt{s} =$ 4.6 GeV, a clear $\omega \chi_{c1}$ signal is seen, and the cross section is measured to be $(9.5 \pm 2.1 \pm 1.3) \pb$, while evidence is found for an $\omega \chi_{c2}$ signal. The first errors are statistical and the second are systematic. Due to low luminosity or low cross section at other energies, no significant signals are observed. In the $\omega \chi_{c2}$ cross section, an enhancement is seen around $\sqrt{s} =$ 4.42 GeV. Fitting the cross section with a coherent sum of the $\psi(4415)$ Breit-Wigner function and a phase space term, the branching fraction $\mathcal{B}(\psi(4415)\to\omega\chi_{c2})$ is obtained to be of the order of $10^{-3}$.

3 data tables

Results on $e^+e^-\to \omega \chi_{c0}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1+\delta)\frac{1}{|1-\Pi|^{2}}(\epsilon_{\pi}\mathcal{B}(\chi_{c0}\to\pi^+\pi^-)+\epsilon_{K}\mathcal{B}(\chi_{c0}\to K^+K^-))\mathcal{B}(\omega\to\pi^+\pi^{-}\pi^{0})\mathcal{B}(\pi^{0}\to\gamma\gamma)$ for $\omega\chi_{c0}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point.

Results on $e^+e^-\to \omega \chi_{c1}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c1}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c1}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.

Results on $e^+e^-\to \omega \chi_{c2}$. Shown in the table are the channels, the center-of-mass energy, the integrated luminosity $\mathcal{L}$, product of radiative correction factor, vacuum polarization factor, branching fraction and efficiency, $\mathcal{D}=(1 + \delta) \frac{1}{|1-\Pi|^{2}} (\epsilon_{e}\mathcal{B}_{e} + \epsilon_{\mu}\mathcal{B}_{\mu}) \mathcal{B}_{1}$ for $\omega\chi_{c2}$, number of observed events $N^{\rm {obs}}$, number of estimated background events $N^{\rm bkg}$, number of signal events $N^{\rm sig}$ determined as described in the text, Born cross section $\sigma^{\rm B}$(or upper limit at 90$\%$ C.L.) at each energy point. $N^{\rm sig}$ for $\omega\chi_{c2}$ at $\sqrt{s}$ = 4.416 and 4.599 GeV is taken from the fit. Dash means that the result is not applicable.


Version 4
Measurement of the $\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

10 data tables

Results of the BESIII measurement of the cross section $\sigma^{\rm bare}_{\pi^+\pi^-(\gamma_{\rm FSR})} \equiv \sigma^{\rm bare}(e^+e^-\rightarrow\pi^+\pi^-(\gamma_{\rm FSR}))$ and the squared pion form factor $|F_\pi|^2$. The errors are statistical only. The value of $\sqrt{s'}$ represents the bin center. The 0.9$\%$ systematic uncertainty is fully correlated between any two bins.

Results for the bare cross section $\sigma^\text{bare}_{\pi^+\pi^-}$ and the pion form factor together with their statistical uncertainties. The systematical uncertainties are given by 0.9% (see <a href="https://inspirehep.net/literature/1385603">arXiv:1507.08188</a>).

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

More…

Observation of $Z_c(3900)^{0}$ in $e^+e^-\to\pi^0\pi^0 J/\psi$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 115 (2015) 112003, 2015.
Inspire Record 1377204 DOI 10.17182/hepdata.73771

Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.

1 data table

Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.


Search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 92 (2015) 012008, 2015.
Inspire Record 1366025 DOI 10.17182/hepdata.73692

Using data samples collected at center of mass energies of $\sqrt{s}$ = 4.009, 4.226, 4.257, 4.358, 4.416 and 4.599 GeV with the BESIII detector operating at the BEPCII storage ring, we search for the isospin violating decay $Y(4260)\rightarrow J/\psi \eta \pi^{0}$. No signal is observed, and upper limits on the cross section $\sigma(e^{+}e^{-}\rightarrow J/\psi \eta \pi^{0})$ at the 90\% confidence level are determined to be 3.6, 1.7, 2.4, 1.4, 0.9 and 1.9 pb, respectively.

1 data table

Results on $e^{+}e^{-}\rightarrow J/\psi\eta\pi^{0}$. Listed in the table are the integrated luminosity $\cal{L}$, radiative correction factor (1+$\delta^{r}$) taken from QED calculation assuming the $Y(4260)$ cross section follows a Breit$-$Wigner line shape, vacuum polarization factor (1+$\delta^{v}$), average efficiency ($\epsilon^{ee}{\cal B}^{ee}$ + $\epsilon^{\mu\mu}{\cal B}^{\mu\mu}$), number of observed events $N^\text{obs}$, number of estimated background events $N^\text{bkg}$, the efficiency corrected upper limits on the number of signal events $N^\text{up}$, and upper limits on the Born cross section $\sigma^\text{Born}_\text{UL}$ (at the 90 $\%$ C.L.) at each energy point.


Measurement of the proton form factor by studying $e^{+} e^{-}\rightarrow p\bar{p}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112004, 2015.
Inspire Record 1358937 DOI 10.17182/hepdata.73442

Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\rightarrow p\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|G_{M}|$ within uncertainties.

1 data table

Summary of the Born cross section $\sigma_\text{Born}$, the effective FF $|G|$, and the related variables used to calculate the Born cross sections at the different c.m.energies $\sqrt{s}$, where $N_\text{obs}$ is the number of candidate events, $N_\text{bkg}$ is the estimated background yield, $\varepsilon^\prime=\varepsilon\times(1+\delta)$ is the product of detection efficiency $\varepsilon$ and the radiative correction factor $(1+\delta)$, and $L$ is the integrated luminosity. The first errors are statistical, and the second systematic.


Measurement of the $e^{+}e^{-} \to \eta J/\psi$ cross section and search for $e^{+}e^{-} \to \pi^{0} J/\psi$ at center-of-mass energies between 3.810 and 4.600~GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112005, 2015.
Inspire Record 1355215 DOI 10.17182/hepdata.73336

Using data samples collected with the BESIII detector operating at the BEPCII collider at center-of-mass energies from 3.810 to 4.600 GeV, we perform a study of $e^{+}e^{-} \to \eta J/\psi$ and $\pi^0 J/\psi$. Statistically significant signals of $e^{+}e^{-} \to \eta J/\psi$ are observed at $\sqrt{s}$ = 4.190, 4.210, 4.220, 4.230, 4.245, 4.260, 4.360 and 4.420 GeV, while no signals of $e^{+}e^{-} \to \pi^{0} J/\psi$ are observed. The measured energy-dependent Born cross section for $e^{+}e^{-} \to \eta J/\psi$ shows an enhancement around 4.2~GeV. The measurement is compatible with an earlier measurement by Belle, but with a significantly improved precision.

3 data tables

Results on $e^{+}e^{-}\to\eta J/\psi$ in data samples in which a signal is observed with a statistical significance larger than $5\sigma$. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{obs}_{\eta}(\mu^{+}\mu^{-})$/$N^\mathrm{obs}_{\eta}(e^{+}e^{-})$ from the fit, efficiency $\epsilon_{\mu}/\epsilon_{e}$, radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}(\mu^{+}\mu^{-})$/$\sigma^{B}(e^{+}e^{-})$ and combined Born cross section $\sigma^{B}_\mathrm{Com}$. The first uncertainties are statistical and the second systematic.

Upper limits of $e^{+}e^{-} \to \eta J/\psi$ using the $\mu^{+}\mu^{-}$ mode. The table shows the CM energy $\sqrt{s}$, integrated luminosity $\mathcal{L}_\mathrm{int}$, number of observed $\eta$ events $N^\mathrm{sg}_{\eta}$, number of background from $\eta$ sideband $N^\mathrm{sb}_{\eta}$, and from $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, upper limit of signal number with the consideration of selection efficiency $N^\mathrm{up}_{\eta}/\epsilon$ (at the $90\%$ C.L.), radiative correction factor $(1+\delta^{r})$, vacuum polarization factor $(1+\delta^{v})$, Born cross section $\sigma^{B}$ and upper limit on the Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.). The first uncertainties are statistical and the second systematic.

Upper limits of $e^{+}e^{-} \to \pi^{0} J/\psi$. The table shows the number of observed events in the $\pi^{0}$ signal region $N^\mathrm{sg}$, number of events in $\pi^{0}$ sideband $N^\mathrm{sb}_{\pi^{0}}$, and in $J/\psi$ sideband $N^\mathrm{sb}_{J/\psi}$, efficiency $\epsilon$, the upper limit of signal events with the consideration of the selection efficiency $N^\mathrm{up}(\mu^{+}\mu^{-})/\epsilon$ (at the $90\%$ C.L.) and the upper limit of Born cross sections $\sigma^{B}_\mathrm{up}$ (at the $90\%$ C.L.).


Evidence for $e^+e^-\to\gamma\chi_{c1, 2}$ at center-of-mass energies from 4.009 to 4.360 GeV

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Chin.Phys.C 39 (2015) 041001, 2015.
Inspire Record 1329785 DOI 10.17182/hepdata.72880

Using data samples collected at center-of-mass energies of $\sqrt{s}$ = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process $e^+e^-\to\gamma\chi_{cJ}$ $(J = 0, 1, 2)$ and find evidence for $e^+e^-\to\gamma\chi_{c1}$ and $e^+e^-\to\gamma\chi_{c2}$ with statistical significances of 3.0$\sigma$ and 3.4$\sigma$, respectively. The Born cross sections $\sigma^{B}(e^+e^-\to\gamma\chi_{cJ})$, as well as their upper limits at the 90% confidence level are determined at each center-of-mass energy.

3 data tables

The results on $e^+e^-\to\gamma\chi_{c0}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points. Numbers taken from journal version: some slight differences with respect to arXiv:1411.6336v1 in last two columns.

The results on $e^+e^-\to\gamma\chi_{c1}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.

The results on $e^+e^-\to\gamma\chi_{c2}$ Born cross section measurement. Shown in the table are the significance $\sigma$, detection efficiency $\epsilon$, number of signal events from the fits N$^{\rm obs}$, radiative correction factor ($1+\delta^{r}$), vacuum polarization factor ($1+\delta^{v}$), upper limit (at the 90$\%$ C.L.) on the number of signal events N$^{\rm UP}$, Born cross section $\sigma^{B}$ and upper limit (at the 90$\%$ C.L.) on the Born cross section $\sigma^{\rm UP}$ at different CME points.