None
'1'. '2'. '3'.
Using a low background data sample of $9.7\times10^{5}$ $J\psi\rightarrow\gamma\eta^\prime$, $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ are studied with both model-dependent and model-independent approaches. The contributions of $\omega$ and the $\rho(770)-\omega$ interference are observed for the first time in the decays $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ in both approaches. Additionally, a contribution from the box anomaly or the $\rho(1450)$ resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.
Numbers of events selected (Column 2), numbers of background events from sideband (Column 3), efficiencies (Column 4), and resolution RMS (Column 5) for different $M_{\pi^+\pi^-}$ bins.
The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.
Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025<-t<0.29 GeV2. The data are well described by the exponential form ebt with a slope b=15.28±0.58 (16.98±0.25) GeV−2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σel=12.87±0.30 and 19.70±0.85 mb.
Final results (systematic errors included).
Final results (systematic errors included).
Statistical errors only. Data supplied by S. Belforte.
We have performed a partial-wave analysis of the reaction K−p→KS0π+π−n at 6 GeV/c. We present the results of the analysis of about 4500 events in the low-t region (|t′|<0.2 GeV2) for the dominant waves in the 1200-to-2000-MeV mass range. We observe the 2+ K*(1430) and clear signals for the 1+ Q2(1400) and the 3− K*(1800). We find a new 1− resonance at about 1500 MeV and have some evidence for another 1− resonance at 1800 MeV. We also present the results of a partial-wave analysis as a function of t in the 1430-MeV mass region.
TP DEPENDENCE OF PARTIAL WAVES ALSO STUDIED.
We present differential and total cross sections for two reactions: π−p→K0Λ and π−p→K0Σ0. The incident pion momenta were 8, 10.7, and 15.7 GeVc. The results are based on an analysis of approximately 22 600 events of the two reactions where the π+ and π− from the decay of the KS0 were detected in the forward leg of the Double Vee Magnetic Spectrometer. The separation of Λ recoils from Σ0 recoils was accomplished by the missing-mass technique.
No description provided.
No description provided.
No description provided.
We present the results of an analysis of data for the reaction π−p→KS0K−p at 20.3-GeV/c incident π momentum. We find that the K0K− effective-mass spectrum shows a single peak in the A2 region which is well fitted by a Breit-Wigner shape. The data in the A2-peak region are inconsistent with the split-A2 shape reported earlier. The distribution in t of the A2 events shows a forward dip followed by an exponential falloff. The A2 decay angular distribution is well fitted by a single resonance with quantum numbers JP=2+. The results of an analysis of the density-matrix elements for this reaction are given.
CORRECTED FOR UNSEEN K0 DECAYS AND FOR BREIT-WIGNER RESONANCE TAILS.
INCLUDING THE DENSITY MATRIX ELEMENTS OMITTED FROM THIS FIT GIVES NO SIGNIFICANT IMPROVEMENT AND THE NEW PARAMETERS ARE CLOSE TO ZERO. LIM INDICATES FITTED VALUE LIMITED FROM VARIATION BY PHYSICAL CONSTRAINTS FROM OTHER PARAMETERS.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
This paper reports measurements of the differential cross sections for the reactions e+e−→e+e− (Bhabha scattering) and e+e−→γγ (γ-pair production). The reactions are studied at a center-of-mass energy of 29 GeV and in the polar-angular region ‖costheta‖<0.55. A direct cross-section comparison between these two reactions provides a sensitive test of the predictions of quantum electrodynamics (QED) to order α3. When the ratio of γ-pair to Bhabha experimental cross sections, integrated over ‖costheta‖<0.55, is divided by the same ratio predicted from α3 QED theory, the result is 1.007±0.009±0.008. The 95%-confidence limits on the QED-cutoff parameters are Λ+>154 GeV and Λ−>220 GeV for Bhabha scattering, and Λ+>59 GeV and Λ−>59 GeV for γ-pair production.
No description provided.
Data from the High Resolution Spectrometer at the SLAC storage ring PEP have been used to study the inclusive production of baryons and mesons. Time-of-flight measurements are used to identify the charged hadrons. Neutral hadrons are identified from effective-mass peaks associated with their decay into two charged particles. Cross sections and other inclusive production characteristics are presented for π±, K±, and K0 (K¯0) mesons, and for the baryons (antibaryons) p (p¯) and Λ (Λ¯). The ratio of the inclusive cross section to the point cross section for the K0 and K¯0 mesons is R(K0,K¯0)=6.15±0.13±0.25, and for Λ and Λ¯, R(Λ,Λ¯)=0.846±0.036±0.085. The neutral-hadron differential cross sections are compared with the predictions of the Lund string model.
Charged particle fractions. Errors contain systematic uncertainties.
Charged particle invariant cross sections. Errors contain systematic uncertainties.
Charged particle invariant cross sections. Errors contain systematic uncertainties.