We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
No description provided.
Forward backward charge asymmetry.
No description provided.
The reaction of K − p → Σ + (1660) π − was studied in a 65 event/μb sample of Σππ(π), Λππ(π) and p K 0 π − final states. The main production features observed are that the Σ (1660) decaying into Σππ is mostly Λ (1405) π and is produced only at small t ; the Σ (1660) decaying into Σπ shows both forward and backward production. This confirms earlier results suggesting the existence of two Σ (1660) resonances. An Adair analysis and a (model-dependent) moments analysis find a J = 3 2 preference for the Σ + (1660)→ Λ (1405) π + → Σ + π − π + ; a Dalitz-Miller analysis of the decay Σ + (1660) → Λ (1405) π + → Σ − π + π + determines J P to be 3 2 − . For the Σ + (1660) → Σ 0 π + a moments analysis suggests J = 3 2 . Branching ratios are determined, which (with the exceptation of the Λ (1405) π mode) are in reasonable agreement with results from formation experiments for the J P = 3 2 − Σ(1660) resonance. We compare our branching ratios with SU(3) and SU(6) predictions; the latter comparison suggests that, unless there is strong configuration mixing, Σ (1660) → Λ (1405) π , if 3 2 − , cannot be a member of the (70, 1 − ) multiplet.
No description provided.
PRODUCTION ANGULAR DISTRIBUTIONS OF SIG(1670D13)+ DIFFER FOR THE TWO FINAL STATES <LAM(1405S01) PI+> AND <SIGMA PION> SUGGESTING THE EXISTENCE OF TWO SIG(1660) RESONANCES.
VALUES IN STRONG DISAGREEMENT WITH THE STODOLSKY-SAKURAI MODEL PREDICTIONS.