We present a measurement of the ratio of multijet cross sections in pp-bar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a data set corresponding to an integrated luminosity of 0.7 fb-1 collected with the D0 detector. The ratio of the inclusive three-jet to two-jet cross sections, R3/2, has been measured as a function of the jet transverse momenta. The data are compared to QCD predictions in different approximations. Popular tunes of the PYTHIA event generator do not agree with the data, while SHERPA provides a reasonable description of the data. A perturbative QCD prediction in next-to-leading order in the strong coupling constant, corrected for non-perturbative effects, gives a good description of the data.
The measured ratio of 3 to 2 jets as a function of the maximum jet PT for a minimum jet PT of 30 GeV.
The measured ratio of 3 to 2 jets as a function of the maximum jet PT for a minimum jet PT of 50 GeV.
The measured ratio of 3 to 2 jets as a function of the maximum jet PT for a minimum jet PT of 70 GeV.
A search for diphoton events with large missing transverse momentum has been performed using proton-proton collision data at sqrt(s) = 7 TeV recorded with the ATLAS detector, corresponding to an integrated luminosity of 4.8 fb^-1. No excess of events was observed above the Standard Model prediction and model-dependent 95% confidence level exclusion limits are set. In the context of a generalised model of gauge-mediated supersymmetry breaking with a bino-like lightest neutralino of mass above 50 GeV, gluinos (squarks) below 1.07 TeV (0.87 TeV) are excluded, while a breaking scale Lambda below 196 TeV is excluded for a minimal model of gauge-mediated supersymmetry breaking. For a specific model with one universal extra dimension, compactification scales 1/R < 1.40 TeV are excluded. These limits provide the most stringent tests of these models to date.
Observeded limit on gluino mass as function of LSP mass for the GGM model.
Limit on squark mass as function of LSP mass for the GGM model.
Cross section limit for the SPS8 model.
This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying respectively to tbarq or tq, leading to a resonance within the ttbar + jets signature. The full 2011 ATLAS pp collision dataset from the LHC (4.7 fb-1) is used to search for ttbar events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.
Upper limits of the cross sections and couling (g_R) in the WPRIME colour singlet model.
Upper limits of the cross sections and couling (g_R) in the PHI colour triplet model.
The cross section for dijet production in pp collisions at sqrt(s) = 7 TeV is presented as a function of xi, a variable that approximates the fractional momentum loss of the scattered proton in single-diffractive events. The analysis is based on an integrated luminosity of 2.7 inverse nanobarns collected with the CMS detector at the LHC at low instantaneous luminosities, and uses events with jet transverse momentum of at least 20 GeV. The dijet cross section results are compared to the predictions of diffractive and nondiffractive models. The low-xi data show a significant contribution from diffractive dijet production, observed for the first time at the LHC. The associated rapidity gap survival probability is estimated.
$\sqrt{s}=7$ TeV, $pp \to \text{jet}_{1}\text{jet}_{2}$, $|\eta^{j_1,j_2}|<4.4$, $p_{T}^{j_1,j_2} > 20$ GeV.
The results of a search for pair production of light top squarks are presented, using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collisions collected with the ATLAS detector at the Large Hadron Collider. This search targets top squarks with masses similar to, or lighter than, the top quark mass. Final states containing exclusively one or two leptons (e, mu), large missing transverse momentum, light-jets and b-jets are used to reconstruct the top squark pair system. Global mass scale variables are used to separate the signal from a large ttbar background. No excess over the Standard Model expectations is found. The results are interpreted in the framework of the Minimal Supersymmetric Standard Model, assuming the top squark decays exclusively to a chargino and a b-quark. Light top squarks with masses between 123-167 GeV are excluded for neutralino masses around 55 GeV.
Expected 95 PCT exclusion limit in the M(stop), M(neutralino) plane in gaugino universality scenario.
Observed 95 PCT exclusion limit in the M(stop), M(neutralino) plane in gaugino universality scenario.
Expected 95 PCT exclusion limit in the M(chargino), M(neutralino) plane in the scenario where M(stop) = 180 GEV.
A search for doubly-charged Higgs bosons decaying to pairs of electrons and/or muons is presented. The search is performed using a data sample corresponding to an integrated luminosity of 4.7 fb-1 of pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC. Pairs of prompt, isolated, high-pT leptons with the same electric charge (ee, emu, mumu) are selected, and their invariant mass distribution is searched for a narrow resonance. No significant excess over Standard Model background expectations is observed, and limits are placed on the cross section times branching ratio for pair production of doubly-charged Higgs bosons. The masses of doubly-charged Higgs bosons are constrained depending on the branching ratio into these leptonic final states. Assuming pair production, coupling to left-handed fermions, and a branching ratio of 100% for each final state, masses below 409 GeV, 375 GeV, and 398 GeV are excluded for ee, emu, mumu, respectively.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to left-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to right-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
A measurement is presented of the relative prompt production rate of chi(c2) and chi(c1) with 4.6 inverse femtobarns of data collected by the CMS experiment at the LHC in pp collisions at sqrt(s) = 7 TeV. The two states are measured via their radiative decays chi(c) to J/psi + gamma, with the photon converting into a dielectron pair for J/psi rapidity abs(y(J/psi)) < 1.0 and photon transverse momentum pt(gamma) > 0.5 GeV. The measurement is given for six intervals of pt(J/psi) between 7 and 25 GeV. The results are compared to theoretical predictions.
The ratios of the CHI/C2 to CHI/C1 production cross sections uncorrected for the respective branching ratios to (J/PSI GAMMA) as a function of PT(J/PSI) in the fiducial region PT(Gamma)> 0.5 GeV/c and |y(J/PSI)/ < 1.0, assuming unpolarized CHI/C production. The last four columns report the additional uncertainties from the extreme polarization scenarios in the helicity(HX) and Collins-Soper(CS) frames /.
The ratios of the CHI/C2 to CHI/C1 production cross sections corrected for the respective branching ratios to (J/PSI GAMMA) as a function of PT(J/PSI) in the fiducial region PT(Gamma)> 0.5 GeV/c and |y(J/PSI)/ < 1.0, assuming unpolarized CHI/C production. The second systematic error is dure to the uncertainties in the branching ratios. The last four columns report the additional uncertainties from the extreme polarization scenarios in the helicity(HX) and Collins-Soper(CS) frames.
The ratios of the CHI/C2 to CHI/C1 production cross sections uncorrected for the respective branching ratios to (J/PSI GAMMA) as a function of PT(J/PSI) after extrapolating to the kinematic region PT(Gamma)>0 assuming unpolarized CHI/C production. The last two columns report the variations due to changes in the assumed CHI/C polarizations.
Results are presented from a search for heavy, right-handed muon neutrinos, N[mu], and right-handed W[R] bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 inverse femtobarn sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the W[R] mass, dependent on the value of M(W[R]). The excluded region in the two-dimensional (M(W[R]), M(N[mu])) mass plane extends to M(W[R]) = 2.5 TeV.
The 95% confidence level observed (Obs.) and expected (Exp.) exclusion limits (in fb) on the WR production cross section times branching fraction for WR -> mu mu j j as a function of WR (mWR) and Nmu (mNmu) mass (in GeV) for 800 GeV <= mWR <= 2500 GeV. The 68% and 95% uncertainty bands for the expected limit (Exp. 68% up/down and Exp. 95% up/down, respectively), given in fb, are also included for each (mWR,mNmu) entry.
The transverse momentum ($p_{\mathrm T}$) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC. The $p_{\mathrm T}$ spectra measured near central rapidity in the range $0.5<p_{\mathrm T}<20$ GeV/$c$ exhibit a weak pseudorapidity dependence. The nuclear modification factor $R_{\mathrm{pPb}}$ is consistent with unity for $p_{\mathrm T}$ above 2 GeV/$c$. This measurement indicates that the strong suppression of hadron production at high $p_{\mathrm T}$ observed in Pb-Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations.
Normalized differential primary charged particle yield.
pp INEL cross section scaled by nuclear overlap.
Nuclear Modification Factor R_pPb in the central region.
The first observation of the Z boson decaying to four leptons in proton-proton collisions is presented. The analyzed data set corresponds to an integrated luminosity of 5.02 inverse femtobarns at sqrt(s) = 7 TeV collected by the CMS detector at the Large Hadron Collider. A pronounced resonance peak, with a statistical significance of 9.7 sigma, is observed in the distribution of the invariant mass of four leptons (electrons and/or muons) with mass and width consistent with expectations for Z boson decays. The branching fraction and cross section reported here are defined by phase space restrictions on the leptons, namely, 80 < m[4l] < 100 GeV, where m[4l] is the invariant mass of the four leptons, and m[ll] > 4 GeV for all pairs of leptons, where m[ll] is the two-lepton invariant mass. The measured branching fraction is B(Z to 4l) = (4.2 /+0.9/-0.8 (stat.) +/- 0.2 (syst.)) 10E-6 and agrees with the standard model prediction of 4.45 10E-6. The measured cross section times branching fraction is sigma(pp to Z) B(Z to 4 l) = 112 +23/-20 (stat.) +7/-5 (syst.) +3/-2 (lumi.) fb, also consistent with the standard model prediction of 120 fb. The four-lepton mass peak arising from Z to 4 l decays provides a calibration channel for the Higgs boson search in the H to ZZ to 4 l decay mode.
The measured branching fraction Z->4l.
The measured Z->4l cross section times branching fraction. The (sys) error is the total systematic error, luminosity uncertainty is separated.