We present a measurement of the inclusive jet cross section in p-pbar collisions at sqrt{s}=1.96 TeV based on data collected by the CDF II detector with an integrated luminosity of 1.13 fb^-1. The measurement was made using the cone-based Midpoint jet clustering algorithm in the rapidity region of |y|<2.1. The results are consistent with next-to-leading-order perturbative QCD predictions based on recent parton distribution functions (PDFs), and are expected to provide increased precision in PDFs at high parton momentum fraction x. The results are also compared to the recent inclusive jet cross section measurement using the k_T jet clustering algorithm, and we find that the ratio of the cross sections measured with the two algorithms is in agreement with theoretical expectations over a large range of jet transverse momentum and rapidity.
Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region < 0.1. The bin-by-bin correction factors from parton to hadron-level are also tabulated.
Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region 0.1 to 0.7. The bin-by-bin correction factors from parton to hadron-level are also tabulated.
Measured inclusive jet cross section as a function of jet transverse momentum in the absolute rapidity region 0.7 to 1.1. The bin-by-bin correction factors from parton to hadron-level are also tabulated.
Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q1^2 and Q2^2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W_gammagamma^2/(Q1 Q2)), for an average photon virtuality <Q2> = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 <= Y <= 5. An excess is observed in the interval 5 < Y <= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.
Differential cross section as a function of the photon virtualities Qi**2. Here Q1 is the virtuality w.r.t the electron vertex, and Q2 w.r.t the positron vertex. Data are given both before and after radiative corrections.
Differential cross section as a function of W, the invariant mas of the virtual GAMMA*GAMMA* system. Data are given both before and after radiative corrections.
Differential cross section as a function of the variable LN(W**2/Q1*Q2). Data are given both before and after radiative corrections.
Measurements of the two-photon interaction e + e − → e + e − + hadrons at s ≃ 91 GeV and s ≃ 183 GeV are presented. The double-tag events, collected with the L3 detector, correspond to interated luminosities of 140 pb −1 at 91 GeV and 52 pb −1 at 183 GeV. The cross-section of γ ∗ γ ∗ collisions has been measured at 〈 Q 2 〉 = 3.5 GeV 2 and 〈 Q 2 〉 = 14 GeV 2 . The data agree well with predictions based on perturbative QCD, while the Quark Parton Model alone is insufficient to describe the data.
No description provided.
No description provided.
No description provided.
An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
We present a study of the inclusive η production based on 300 000 hadronic Z 0 decays. The measured inclusive momentum distribution can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results with low energy e + e − data, we find that QCD describes both the shape and the energy evolution of the η spectrum. The comparison of η production rates in quark- and gluon-enriched jet samples does not show statistically significant evidence for more abundant production of η mesons in gluon fragmentation.
Differential cross section for inclusive eta production, normalized to the total hadronic cross section.
Differential cross section for inclusive eta production, normalized to the total hadronic cross section.