A search for resonance-like structures in the $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ invariant mass spectrum is performed using proton-proton collision data collected by the CMS experiment at the LHC at $\sqrt{s} = $ 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The $\mathrm{B}^{0}_{\mathrm{s}}$ mesons are reconstructed in the decay chain $\mathrm{B}^{0}_{\mathrm{s}} \rightarrow \mathrm{J}/\psi\,\phi$, with $\mathrm{J}/\psi \rightarrow \mu^+\mu^-$ and $\phi\rightarrow\mathrm{K^{+}}\mathrm{K^{-}}$. The $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ invariant mass distribution shows no statistically significant peaks for different selection requirements on the reconstructed $\mathrm{B}^{0}_{\mathrm{s}}$ and $\pi^{\pm}$ candidates. Upper limits are set on the relative production rates of the X(5568) and $\mathrm{B}^{0}_{\mathrm{s}}$ states times the branching fraction of the decay $\mathrm{X}(5568)^{\pm} \rightarrow \mathrm{B}^{0}_{\mathrm{s}} \pi^{\pm} $. In addition, upper limits are obtained as a function of the mass and the natural width of possible exotic states decaying into $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$.
Upper limit of the relative production of the X(5568) decaying to $B^s \pi^\pm$, with respect to the inclusive $B^0_s$ production.
Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions at sqrt(s) = 7 and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 inverse femtobarns, respectively. The analysis is performed using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be |f[V]^R| < 0.16, |f[T]^L| < 0.057, and -0.049 < f[T]^R < 0.048, respectively. For the FCNC couplings kappa[tug] and kappa[tcg], the 95% CL upper limits on coupling strengths are |kappa[tug]|/Lambda < 4.1E-3 TeV-1 and |kappa[tcg]|/Lambda < 1.8E-2 TeV-1, where Lambda is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0E-5 and 4.1E-4 for the decays t to ug and t to cg, respectively.
Predicted and observed event yields before and after multijet BNN selection for $\sqrt{s}=7$ and $8$ TeV.
List of input variables for the Bayesian neural networks used in the analysis. Numbers in the cells indicate whether the variable was used in a network in 7 TeV analysis, 8 TeV one, or in both of them.
One-dimensional exclusion limits on anomalous $Wtb$ couplings, evaluated in different two- and three-dimensional scenarios in the analyses conducted at $\sqrt{s}=7$ and $8$ TeV.).
We report a study of radiative decays of \chi_{bJ}(1P)(J=0,1,2) mesons into 74 hadronic final states comprising charged and neutral pions, kaons, protons; out of these, 41 modes are observed with at least 5 standard deviation significance. Our measurements not only improve the previous measurements by the CLEO Collaboration but also lead to first observations in many new modes. The large sample allows us to probe the total decay width of the \chi_{b0}(1P). In the absence of a statistically significant result, a 90% confidence-level upper limit is set on the width at \Gamma_{total}< 2.4 MeV. Our results are based on 24.7 fb^{-1} of e+e- collision data recorded by the Belle detector at the \Upsilon(2S) resonance, corresponding to (157.8\pm3.6)\times10^6 \Upsilon(2S) decays.
Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b0}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b0}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.
Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b1}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b1}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.
Product branching fractions ${\cal B}[\Upsilon(2S)\to\gamma\chi_{b2}(1P)]\times{\cal B}[\chi_{b1}(1P)\to h_{i}]$ ($\times 10^{-5}$) and statistical significance for $\chi_{b2}(1P)$ state. Upper limits at the 90% CL are calculated for modes having significance less than 3$\sigma$.
The process $e^+e^- \to \gamma\chi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $\Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. No significant signal is observed except from $\psi(2S)$ decays. Upper limits on the cross sections between $\sqrt{s}=3.80$ and $5.56~{\rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$\psi(4040$), $\psi(4160)$, and $\psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $\gamma\chi_{cJ}$.
Upper limits on the $e^+e^-\to \gamma\chi_{cJ}$ cross sections.
Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90$\%$ C.L.
Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90$\%$ C.L.